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Abstract
Drilling operations routinely rely on surface instrumentation to infer evolving downhole conditions, yet the
mapping from surface signals to annular multiphase states remains underdetermined when flow transitions and
sensor artifacts co-occur. In managed-pressure and deepwater contexts, early recognition of anomalous influx
signatures is particularly challenging because small deviations in pressure, flow, and pump behavior can be
consistent with multiple latent mechanisms. This paper develops a physics-constrained digital-twin framework
that fuses reduced-order multiphase flow dynamics with uncertainty-aware representation learning to detect,
localize, and quantify anomalies in real time using primarily surface measurements. The central contribution is a
differentiable observer that embeds a quasi-one-dimensional annular flow model inside a probabilistic state-space
estimator while learning only the closure discrepancies needed to reconcile model and data. Unlike purely
discriminative detectors, the proposed approach outputs calibrated posterior distributions over latent annular
states, regime-consistent transport parameters, and an anomaly score tied to mechanistic residuals. The method
supports both abrupt events and slowly drifting conditions through Bayesian change detection on innovation
statistics, and it provides decision support by mapping posterior risk to constraint-aware operational advisories.
The paper details identifiability conditions, stabilization via dissipativity constraints, and robustification to
sensor delays and rate limits. A comprehensive evaluation protocol is proposed to quantify detection latency,
false-alarm control, and out-of-distribution generalization across geometries and fluids without assuming access
to downhole labels.
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1. Introduction
Surface sensing is attractive in drilling because it is ubiq-
uitous, accessible, and comparatively reliable, but it is
also intrinsically indirect [1]. Pressure, flow, and pump
measurements represent a compressed projection of a dis-
tributed multiphase transport process occurring along a
long, tortuous wellbore with evolving boundary condi-
tions. The operational objective is not merely to classify
a measurement window as normal or abnormal, but to
infer what physical state could plausibly generate the ob-
servation while quantifying uncertainty that arises from
model error, unknown fluid properties, and unmeasured
disturbances. The difficulty is intensified by regime tran-
sitions in gas–liquid mixtures, where slip, compressibil-
ity, and friction closure choices can change abruptly,
and where the same surface pressure deviation can be
explained by competing latent causes such as cuttings
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Figure 1. End-to-end digital-twin workflow: synchronized surface measurements drive a reduced-order multiphase physics
core augmented by bounded closure corrections; a Bayesian observer maintains posteriors over latent annular states and
residual channels, producing probabilistic anomaly evidence that is mapped to risk-aware advisories and logged for audit
and calibration.

loading, rheology drift, choke movement, or a develop-
ing influx [2]. In this setting, a detector that produces
a binary label without a calibrated confidence and with-
out a mechanistic diagnosis is operationally brittle: it
can alarm too late when confronted with atypical tran-
sients, or it can over-alarm in the presence of benign
disturbances, eroding trust and encouraging alarm sup-
pression.

Recent machine-learning approaches have shown that
surface-accessible signals can contain useful information
for kick symptom identification, with high predictive ac-
curacy under controlled conditions and engineered fea-
tures [3]. While such results help establish feasibility,
a practical real-time system must address three addi-
tional requirements that are often peripheral in purely
predictive studies. First, it must remain stable and inter-
pretable when the well geometry, fluid properties, and
operational envelope differ from those seen in training
[4]. Second, it must quantify uncertainty rather than
only providing point predictions, because operational de-
cisions are constrained by safety margins and the cost of
false positives can be substantial. Third, it must repre-
sent dynamics: influx growth, gas migration, compress-
ibility, and choke-pump interactions unfold over time
and cannot be faithfully captured by static snapshots
unless the detector implicitly learns a surrogate for the
physics.

This paper argues that these requirements are best
met by a hybrid approach: an explicitly mechanistic
model supplies structure, conservation laws, and the cor-

rect inductive bias for extrapolation, while data-driven
components account for closure mismatch, sensor idiosyn-
crasies, and unmodeled dynamics [5]. The central the-
sis is that a digital twin for wellbore anomaly detec-
tion should be formulated as a probabilistic observer for
a constrained dynamical system, not as a standalone
classifier. The technical contribution is a differentiable,
uncertainty-aware observer that couples a reduced-order
annular multiphase model to a learned closure module
and performs online Bayesian state estimation from sur-
face measurements. The observer is designed to be iden-
tifiable under realistic sensing limitations, to remain sta-
ble by construction through dissipativity and bounded-
ness constraints, and to emit calibrated posteriors that
can be mapped to risk-aware advisories.

The remainder of the paper proceeds by first defin-
ing a reduced-order, regime-consistent annular model
suitable for embedding in real-time inference, then con-
structing a physics-constrained representation learning
module that learns only what must be learned [6]. An
online inference layer is developed to compute posteri-
ors and detect change points with controlled false-alarm
rates. Finally, a decision-support mapping is described,
followed by an evaluation framework that emphasizes
out-of-distribution robustness, detection latency, and cal-
ibration rather than only accuracy. Throughout, the
goal is not to replace operational heuristics but to supply
a mathematically grounded layer that translates surface
evidence into probabilistic statements about downhole
physical states and anomaly likelihood [7].
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Figure 2. Reduced-order annular multiphase discretization: the wellbore is partitioned into control volumes with latent
pressure, void fraction, and mixture velocity states, driven by pump/choke boundary conditions and reconciled with data
via inferred distributed source terms and structured residual channels.

2. System Model

A digital twin intended for real-time anomaly detection
must balance fidelity with computational tractability.
Full two-fluid models with detailed closure can be too
stiff for online inference when embedded in a Bayesian
estimator, especially when parameter uncertainty is in-
cluded. Conversely, overly simplified models risk con-
founding multiple mechanisms into an undifferentiated
residual that is difficult to interpret. This section defines
a reduced-order annular transport model that preserves
the dominant couplings relevant to surface pressure sig-
natures while supporting regime-consistent parameteri-
zation [8].

Consider a wellbore segment parameterized by mea-
sured depth coordinate s ∈ [0,L] and time t ≥ 0, with
annular cross-sectional area Aa(s) and hydraulic diame-
ter Dh(s). Let the mixture consist of a liquid phase (in-
cluding drilling fluid and entrained solids treated as an
effective liquid) and a gas phase. Define gas void fraction
α(s, t), mixture density ρm(s, t) = αρg(p,T )+ (1−α)ρℓ,
mixture velocity um(s, t), and mixture pressure p(s, t) [9].
A reduced drift-flux form captures slip through a clo-
sure for the gas velocity relative to the mixture. Let
ug = C0um +Vg j denote the drift-flux relation, where C0
is a distribution parameter and Vg j is a drift velocity that
depends on regime, inclination, and local properties.

A quasi-one-dimensional conservation structure can

be written as

∂
∂ t

(
ρmAa

)
+

∂
∂ s

(
ρmumAa

)
= qm(s, t),

∂
∂ t

(
αρgAa

)
+

∂
∂ s

(
αρgugAa

)
= qg(s, t),

[10] ∂
∂ t

(
ρmumAa

)
+

∂
∂ s

(
ρmu2

mAa + pAa
)
=−Aaρmgsinθ(s)

− τw(s, t)Pw(s)+qu(s, t).
(1)

where qm represents distributed sources such as for-
mation influx or loss, qg is the gas source term, θ(s) is in-
clination, Pw(s) is wetted perimeter, and τw is wall shear
stress [11]. For real-time usage, the model is discretized
into N control volumes yielding a finite-dimensional state
vector. Let x(t) collect cell-averaged quantities such as
pressure, mixture velocity, and gas mass fraction, with
dynamics

ẋ(t) = f
(
x(t),u(t),ϑ(t)

)
+w(t), (2)

where u(t) denotes controlled boundary inputs such as
pump rate and choke opening (or equivalent boundary
pressure), ϑ(t) denotes slowly varying parameters in-
cluding effective friction and slip coefficients, and w(t)
aggregates model discrepancy and process noise.

The measurement model reflects what surface sen-
sors provide [12]. Let y(t) include standpipe pressure,
casing pressure, surface flow-in and flow-out, and pit
volume rate when available. A key modeling choice is
to explicitly represent sensor dynamics and delays, since
rate-limited or filtered measurements can produce arti-
facts that mimic physical transients. The measurement
model is [13]

y(t) = h
(
x(t),u(t)

)
+ v(t), (3)
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Figure 3. Hybrid learning decomposition: a conservation-structured physics core is augmented by a bounded residual
module and a continuous regime embedding that interpolates closure families; end-to-end differentiability supports
likelihood-based fitting on surface signals while enforcing physical constraints (e.g., bounded void fraction and stable
closure corrections).

with v(t) as measurement noise. When only a subset of
surface signals is available, the mapping from x to y be-
comes highly non-injective, motivating the probabilistic
formulation and the inclusion of structural priors.

To maintain regime consistency without enumerat-
ing regimes as discrete labels, this paper uses a contin-
uous regime embedding r(s, t) that interpolates between
closure families [14]. The embedding influences drift-flux
parameters, friction factors, and compressibility correc-
tions. The embedding is not treated as a manually as-
signed label but as a latent variable inferred from data
through regularized dynamics. The motivation is that
flow-regime identification from two-phase data can be
accurate when the feature space is expressive and the
training set covers the operational envelope, as shown by
high-performing neighborhood-based classifiers in verti-
cal configurations [15], yet in real drilling the regime
boundaries are uncertain and can shift with geometry
and fluid changes [16]. A continuous embedding reduces
brittleness by allowing soft transitions while still con-
straining closures to physically plausible manifolds.

The model must also incorporate boundary condi-
tions that are consistent with drilling hydraulics. At
the pump, flow-in sets an inlet mixture mass flux. At
the choke, an outlet relation couples annular pressure to
choke opening and downstream backpressure [17]. These
relations can be captured by algebraic constraints ap-
pended to the state dynamics, producing a differential-
algebraic form that is still amenable to differentiable
simulation if the constraints are stabilized. The outcome
of this section is a tractable, structured dynamical sys-
tem that can generate surface observations from latent
annular states, but with acknowledged mismatch due

to uncertain closures and unmodeled effects. The next
section explains how that mismatch is handled without
surrendering physical interpretability [18].

3. Learning Architecture
A central design goal is to learn only what cannot be
reliably specified from first principles while enforcing in-
variants that should hold across wells. The architecture
therefore separates the model into a physics core and a
learned closure residual. The physics core implements
the discretized conservation dynamics and boundary re-
lations. The learned component corrects selected clo-
sures such as wall shear and slip velocity, and it provides
a compact representation of regime embedding dynam-
ics [19]. This section formalizes that decomposition and
the constraints used to ensure stable and physically plau-
sible behavior.

Let the discretized physics core be written as fphy(x,u,ϑ),
where ϑ includes nominal closures. Introduce a learned
residual ∆ϕ (x,u) with parameters ϕ , yielding

ẋ(t) = fphy
(
x(t),u(t),ϑ0

)
+B∆ϕ

(
x(t),u(t)

)
+w(t).

(4)

The matrix B selects which state channels are modified
by the learned residual to avoid unconstrained interfer-
ence with conserved quantities [20]. For example, the
residual may alter the shear stress term and drift-flux
closure but not directly inject or remove mass. Con-
cretely, the friction term can be expressed as

τw(s, t) = τw,0(x,u)+∆ϕ ,τ(x,u), (5)
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Figure 4. Online Bayesian inference loop: predictive propagation through the differentiable physics model is corrected by
surface measurements under constraint-preserving transforms; innovation statistics and a sliding-window change detector
convert posterior-consistent residual evidence into anomaly alarms and localized probabilistic diagnostics.

and slip parameters can be adjusted via

C0(s, t) = σ
(

C0,0(x,u)+∆ϕ ,C(x,u)
)
,

Vg j(s, t) = softplus
(

Vg j,0(x,u)+∆ϕ ,V (x,u)
)
. (6)

where σ(·) and softplus(·) enforce boundedness and
nonnegativity constraints implied by the closure defini-
tions. These simple nonlinearities provide a hard barrier
against physically impossible values without requiring
post-hoc clipping that can break differentiability [21].

Because regime changes are a major source of non-
linearity, the architecture introduces a latent regime em-
bedding r(t) that evolves smoothly but can respond rapidly
when evidence supports a transition. The embedding in-
fluences closure selection through a convex combination
of K basis closures:

τw,0(x,u,r) =
K

∑
k=1

πk(r)τ(k)w (x,u),

Vg j,0(x,u,r) =
K

∑
k=1

πk(r)V (k)
g j (x,u). (7)

where πk(r) are nonnegative weights summing to one.
Rather than treating r as a supervised label, it is inferred
as part of the state, with dynamics [22]

ṙ(t) = gϕ
(
r(t),x(t),u(t)

)
+η(t), (8)

where gϕ is a learned function constrained to be contrac-
tive in r for stability, and η(t) is a small diffusion term
to prevent degeneracy in probabilistic inference.

Training such a hybrid model must contend with par-
tial observability: downhole labels for x(t) are rarely
available. The architecture therefore uses self-supervised
objectives defined on surface signals [23]. Let ŷ(t) be
the predicted surface measurements from the simulated
state x̂(t). A basic objective is the negative log-likelihood
under assumed measurement noise, but naive fitting can
encourage the learned residual to absorb sensor noise or
boundary artifacts. To prevent this, the learning objec-
tive is augmented with structural regularizers. A repre-
sentative continuous-time form is

L (ϕ) =
∫ T

0

((
y(t)− ŷ(t)

)⊤R−1(y(t)− ŷ(t)
)

+λ∆∥∆ϕ (x̂(t),u(t))∥2

+λE Ψ
(
x̂(t)

)
+λS Ω

(
∇sx̂(t)

))
dt[24]. (9)

where R is measurement covariance, Ψ(·) penalizes vi-
olations of invariants such as nonnegative densities and
bounded void fraction, and Ω(·) penalizes nonphysical
spatial oscillations introduced by discretization or over-
fitting. These regularizers are not cosmetic; they are
essential to ensure that the learned component remains
a correction rather than a surrogate for the physics.

A key question is whether the architecture can gener-
alize across geometries and flow orientations [25]. Many
drilling and transport scenarios involve horizontal or
highly deviated segments where stratification becomes
important. Empirically, flow-regime classification in hor-
izontal two-phase systems can achieve high accuracy with
appropriate feature sets and neighborhood-based mod-
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Figure 5. Risk-aware decision support: posterior uncertainty is summarized into interpretable risk indicators and evaluated
under a small set of admissible adjustments via short-horizon predictive rollouts; constraint screening and empirical
calibration quantiles shape conservative advisories suitable for nonstationary drilling conditions.

els, although performance can vary with parameteriza-
tion and the train–test mismatch [26]. The proposed ar-
chitecture leverages this insight differently: rather than
directly importing a classifier, it uses regime-aware basis
closures and allows the embedding r to shift the model
along a physically meaningful manifold. This makes the
model less sensitive to the exact regime boundary defini-
tions used in any particular dataset while still capturing
the leading-order structural changes associated with ori-
entation and stratification [27].

To enable end-to-end differentiability, the discretized
dynamics are integrated with stable, implicit or semi-
implicit schemes when stiffness is present, especially in
compressible gas transport. Differentiable implicit solvers
are feasible when the Jacobian structure is exploited and
when regularization prevents ill-conditioning. The dig-
ital twin is thus a composable object: the physics core
is interpretable and respects conservation, the learned
residual is bounded and localized, and the regime em-
bedding provides flexible but structured adaptation [28].
The next section builds on this to perform online in-
ference, where uncertainty quantification and anomaly
detection are treated as first-class outputs rather than
afterthoughts.

4. Online Inference and Anomaly Detection
A real-time system must continuously ingest streaming
surface measurements, update beliefs about latent states
and parameters, and issue anomaly indications with con-
trolled false-alarm behavior. This section formulates
inference as Bayesian filtering in a constrained nonlin-
ear state-space model, then derives an anomaly score
grounded in innovation statistics and mechanistic resid-
uals. The approach emphasizes calibration and robust-

ness under partial observability [29].
Let the augmented state be z(t)= [x(t)⊤,r(t)⊤,ϑ(t)⊤]⊤,

where ϑ(t) includes slowly varying parameters such as ef-
fective rheology or friction multipliers. The continuous-
time stochastic dynamics can be written as

ż(t) = Fϕ
(
z(t),u(t)

)
+ξ (t), (10)

with ξ (t) representing process noise [30]. Measurements
satisfy y(t) = H

(
z(t),u(t)

)
+ v(t). The filtering objective

is the posterior p(z(t) | y0:t), where y0:t denotes measure-
ments up to time t. Because the model is nonlinear
and may be moderately high-dimensional after spatial
discretization, approximate inference is required.

A practical choice is a constrained ensemble Kalman
filter variant that preserves bounded variables such as
void fraction and regime weights through transforma-
tions. Let z̃ denote an unconstrained parameterization,
with bijections mapping z̃ to z via sigmoid and soft-
plus transforms for bounded components. An ensemble
{z̃(i)}M

i=1 is propagated forward using the differentiable
simulator, then updated using a Kalman-like correction
based on linearized measurement sensitivity estimated
from the ensemble. The update is modified by projection
onto constraint sets to avoid violating physical bounds
[31]. Although not exact, this approach provides a com-
putationally viable approximation that yields sample-
based uncertainty estimates.

When the posterior is highly non-Gaussian, espe-
cially during abrupt events, a particle filter can be used
on a reduced latent space. The reduction is achieved
by learning a low-dimensional latent l(t) that captures
the dominant modes of variation in x(t) that are visible
from surface sensors, while retaining a mechanistic de-
coder that reconstructs a physically plausible field [32].
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Figure 6. Evaluation protocol emphasizing operational reliability: multi-well surface datasets and controlled stress tests
drive repeated digital-twin runs; performance is assessed by detection latency under fixed false-alarm control, probabilistic
calibration/coverage diagnostics, and out-of-distribution robustness, complemented by ablations that isolate the
contribution of regime awareness, residual learning, and Bayesian inference.

In that case, the inference model becomes

l̇(t) = aϕ
(
l(t),u(t)

)
+ ε(t), x(t)≈ Dϕ

(
l(t),u(t)

)
,

(11)

where Dϕ is constrained to satisfy conservation in ex-
pectation by embedding the decoder inside the physics
integrator. This hybrid latent filtering reduces compu-
tational cost while maintaining interpretability through
the decoder and physics core [33].

Anomaly detection is framed as hypothesis testing
on the innovation process. Let ŷ(t | t−) be the one-step-
ahead predictive mean and S(t) the predictive covariance
from the filter. The normalized innovation is

ν(t) = S(t)−1/2(y(t)− ŷ(t | t−)
)
. (12)

Under nominal conditions and correct calibration, ν(t)
should be approximately standard normal (in discrete
time) after accounting for serial correlation induced by
sensor filtering [34]. Deviations indicate either an un-
modeled disturbance, a sensor fault, or a physical anomaly
such as an influx or loss. A basic anomaly score is the
quadratic form

AI(t) = ν(t)⊤ν(t), (13)

but this alone is insufficient because it conflates mismod-
eling and anomalies. The proposed digital twin there-
fore decomposes residuals into mechanistic channels [35].

Let eτ(t) denote the inferred correction to friction, es(t)
the correction to slip, and eq(t) an inferred distributed
source term needed to reconcile mass balance. These
quantities are not directly observed but can be inferred
as part of the augmented state. The anomaly score then
combines innovation evidence with physically meaning-
ful residual structure: [36]

A (t) = E
[
AI(t) | y0:t

]
+ γqE

[
∥eq(t)∥1 | y0:t

]
+ γκ E

[
κ(t) | y0:t

]
. (14)

where κ(t) is a curvature or roughness penalty indi-
cating whether the inferred residuals require spatially os-
cillatory structure that would be physically implausible.
High innovation coupled with a localized, plausible mass
source residual supports a physical anomaly hypothesis,
whereas high innovation coupled with implausible resid-
ual structure suggests sensor faults or boundary incon-
sistencies.

Change detection is implemented by monitoring the
cumulative log-likelihood ratio between a nominal model
and an alternative model that allows a change in the
source term or in selected parameters. Let ℓ0(t) be the
log-likelihood under nominal dynamics and ℓ1(t) under
a change-allowed model [37]. A generalized likelihood
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Aspect Purely data-driven detector Physics-constrained digital
twin ( )

Structural prior Minimal; relies on statistical
regularities

Encodes conservation laws
and wellbore hydraulics ex-
plicitly

Uncertainty output Often point scores or uncali-
brated probabilities

Calibrated posteriors over
latent states and parameters

Interpretability Limited feature-based expla-
nations

Mechanistic explanations
via residuals and inferred
source terms

Generalization Sensitive to train–test mis-
match

Extrapolates using physics;
residuals adapt to local con-
ditions

Regime handling Implicit in training data Continuous regime embed-
ding influencing closures

Sensor artifacts Tends to overfit measure-
ment quirks

Explicit sensor dynamics
and delays in measurement
model

Decision support Thresholded alarms Risk metrics and short-
horizon probabilistic fore-
casts

Table 1. Conceptual contrast between surface-only discriminative detectors and the proposed physics-constrained digital
twin.

ratio statistic is

G(t) = max
τ∈[t−W,t]

∫ t

τ

(
ℓ1(σ)− ℓ0(σ)

)
dσ , (15)

where W is a sliding window. An alarm is triggered
when G(t) exceeds a threshold chosen to control the av-
erage run length under nominal conditions [38]. Because
drilling data are nonstationary, the threshold is adap-
tively adjusted using the filter’s own calibration diagnos-
tics, such as the empirical distribution of AI(t) during
verified nominal intervals.

A practical system must also handle sensor dropouts
and asynchronous sampling. The filter therefore sup-
ports missing data by skipping updates for absent chan-
nels and inflating process noise to reflect increased un-
certainty. For delayed measurements, the system uses a
fixed-lag smoother over a short horizon, re-integrating
the differentiable simulator to incorporate late-arriving
evidence without introducing inconsistency. This is com-
putationally feasible because the reduced-order model
and the learned residual are designed for fast evaluation
[39].

The output of online inference is not merely an alarm.
It is a posterior distribution over latent annular states,
closure corrections, and potential source terms. This
distribution can be interrogated to answer operationally
relevant questions: whether an anomaly is likely, where
along the well it is most consistent with the data, and
how uncertain that localization is [40]. The next section

shows how to translate these probabilistic outputs into
decision support that respects constraints and avoids
overconfident recommendations.

5. Risk-Aware Decision Support
Anomaly detection becomes operationally meaningful only
when it is coupled to a decision layer that accounts for
uncertainty, constraints, and the cost asymmetry be-
tween false negatives and false positives. This section
proposes a mapping from the digital twin’s posterior
outputs to risk metrics and constraint-aware advisories,
emphasizing interpretability and conservatism without
prescribing procedural actions.

Let E denote an event class of concern, such as an
influx-like anomaly, a loss-like anomaly, or a sensor in-
consistency. Define an event probability computed from
the posterior over inferred source terms and residual pat-
terns: [41]

PE (t) = P
(
E | y0:t

)
. (16)

For an influx-like anomaly, E can be operationally char-
acterized as posterior mass on positive distributed gas
source terms above a tolerance over a contiguous re-
gion, together with pressure-consistent transport. Be-
cause any single scalar summary can be misleading, the
framework provides a vector of risk indicators, such as
the posterior mean and credible interval of inferred in-
flux rate, the probability that the inferred source is near
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Symbol Meaning Typical role
s ∈ [0,L] Measured depth coordinate along the

wellbore
Spatial index for dis-
cretization cells

t ≥ 0 Time Index for dynamic
evolution and filter-
ing

α(s, t) Gas void fraction Controls mixture den-
sity and compressibil-
ity

ρm(s, t) Mixture density Appears in mass and
momentum balance

um(s, t) Mixture velocity Drives convective
transport and pres-
sure losses

p(s, t) Annular pressure Primary state linked
to surface pressure
signals

qm(s, t) Distributed mass source term Represents influxes,
losses, and unmea-
sured disturbances

Table 2. Representative variables and symbols used in the reduced-order annular multiphase flow model.

Component Contents Examples
State x(t) Discretized pressure, veloc-

ity, gas fraction fields
Cell-averaged p, um, gas
mass fraction

Regime embedding
r(t)

Low-dimensional represen-
tation of flow pattern

Weights for basis friction
and slip closures

Slow parameters
ϑ(t)

Slowly drifting effective
properties

Friction multipliers, rheol-
ogy surrogates

Control inputs u(t) Actuated boundary condi-
tions

Pump rate, choke opening
or backpressure

Measurements y(t) Surface-accessible signals Standpipe pressure, casing
pressure, flow-in/out, pit
volume rate

Table 3. Key elements of the augmented state-space formulation used in the digital twin observer.

the bit versus higher in the annulus, and the probabil-
ity that the system is in a high-slip, high-void regime
associated with rapid migration.

Decision support is posed as a constrained optimiza-
tion under partial observability. Let u(t) represent ad-
justable boundary inputs, and let c(z,u) represent con-
straints such as pressure limits and equipment bounds.
A risk functional can be defined as [42]

R(u; t) = E
[
C
(
z(t),u(t)

) ∣∣∣ y0:t

]
, (17)

where C penalizes states that violate safety margins or
that increase the likelihood of escalation. The advisories
are generated by evaluating how candidate adjustments
would shift the predicted risk over a short horizon, using

the digital twin as a stochastic predictor:

min
u(·)

E
[∫ t+Th

t
C
(
z(σ),u(σ)

)
dσ

∣∣∣ y0:t

]
subject to c

(
z(σ),u(σ)

)
≤ 0. (18)

In practice, rather than solving a full stochastic con-
trol problem online, the system evaluates a small set of
admissible adjustments and reports the predicted effect
on risk metrics, along with uncertainty bounds. This
keeps the layer interpretable and avoids the impression
of an autonomous controller [43]. The output is framed
as probabilistic guidance: for example, whether the pos-
terior probability of an influx-like event would decrease
under a more conservative boundary condition, and how
that change compares to uncertainty.

A critical issue is avoiding overconfidence. Even a
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Aspect Physics core fphy Learned residual ∆ϕ

Mass conservation Enforces balance of mixture
and gas mass

Does not create or destroy
mass directly

Momentum balance Governs inertial, pressure,
and gravitational forces

Adjusts effective wall shear
contribution

Closures Provides nominal friction
and drift-flux parameters

Adds bounded corrections
to closure values

Regime effects Basis closures parameter-
ized by embedding r

Learns dynamics of r(t) and
smooth transitions

Sensor modeling Includes nominal sensor fil-
ters and delays

Compensates for unmod-
eled sensor idiosyncrasies

Distributed sources Contains baseline forma-
tion influx/loss models

Captures residual source
terms consistent with data

Table 4. Division of responsibilities between mechanistic model components and learned closure residuals.

Inference method Strengths Limitations
Constrained
EnKF

Ensemble-based uncer-
tainty, scalable to many
states

Approximate Gaussian as-
sumptions; may struggle
with severe nonlinearity

Particle filter in la-
tent space

Handles non-Gaussian pos-
teriors in reduced dimen-
sion

Requires informative la-
tent representation and
more samples

Deterministic sim-
ulator + thresh-
olds

Simple implementation,
low computational burden

No explicit uncertainty;
brittle under distribution
shift

Fixed-lag hybrid
smoother

Incorporates delayed data
and refines recent states

Additional computation
and buffering, limited
smoothing horizon

Table 5. Online inference strategies considered for real-time estimation of latent wellbore states.

calibrated filter can become miscalibrated under severe
out-of-distribution conditions. To mitigate this, the deci-
sion layer uses conformal-style calibration on the anomaly
score and on key posterior summaries [44]. Given histor-
ical nominal segments, the system estimates quantiles
of A (t) and of selected residual norms; it then reports
whether the current values exceed calibrated thresholds
at, for example, 95% nominal coverage. This does not
prove correctness, but it enforces a disciplined represen-
tation of uncertainty and helps operators understand
when the model is extrapolating.

Interpretability is enhanced by generating mechanis-
tic explanations tied to the inferred residual structure.
If the posterior places significant mass on a localized
positive gas source term with modest friction correction,
the explanation is framed as a mass-balance-consistent
anomaly [45]. If instead the posterior requires widespread
friction increases without coherent mass sources, the ex-
planation emphasizes likely rheology drift or cuttings-
related effects. When the posterior indicates a sensor
inconsistency, the system highlights which measurement
channels drive the innovation and how sensitive the in-

ference is to their inclusion. These explanations are de-
rived from the model structure rather than from ad hoc
feature attribution methods, which are often fragile in
time-dependent systems.

The decision support layer thus treats the digital
twin as a probabilistic lens: it converts surface signals
into physically constrained hypotheses and quantifies un-
certainty [46]. The next section describes how to eval-
uate such a system rigorously, with metrics that reflect
latency, calibration, and generalization rather than only
classification accuracy.

6. Evaluation Framework and
Implementation Considerations

Evaluating a physics-constrained digital twin differs from
evaluating a purely discriminative classifier because the
outputs include state posteriors, residual decompositions,
and risk metrics. Moreover, ground truth for down-
hole states is often unavailable, so evaluation must com-
bine partial labels, synthetic stress tests, and consis-
tency checks [47]. This section proposes an evaluation
framework and discusses implementation considerations
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Hypothesized
cause

Innovation behaviour Residual structure in the
twin

Influx-like
anomaly

Persistent positive pres-
sure/flow mismatch

Localized positive mass
source term with plausible
migration pattern

Loss-like anomaly Drop in pressure not ex-
plained by controls

Localized negative mass
source, consistent with out-
flow to formation

Rheology drift /
cuttings loading

Gradual pressure increase
and lagged response

Widespread friction correc-
tion without strong local-
ized sources

Sensor fault Large innovation concen-
trated in few channels

Inconsistent residuals; in-
ferred states diverge from
sensor pattern

Choke or boundary
mis-modeling

Mismatch near outlet con-
ditions

Residuals concentrated at
boundary cells and associ-
ated parameters

Table 6. Qualitative connection between anomaly hypotheses, innovation statistics, and inferred residual patterns.

that influence real-time viability.
A primary metric is detection latency under con-

trolled anomaly injections. When synthetic scenarios
are available, an influx-like source term can be injected
into the physics core while generating surface measure-
ments through the same simulator plus realistic sensor
noise and filtering. The digital twin is then run as if on
real data, and the time-to-detection distribution is com-
puted [48]. Latency must be reported jointly with false-
alarm rate because aggressive thresholds can reduce la-
tency at the cost of nuisance alarms. The framework
therefore fixes a nominal false-alarm rate and compares
latency across methods. When synthetic scenarios are
not trusted due to model mismatch, a hybrid approach
can be used: real nominal surface time series are per-
turbed by physically plausible residual patterns learned
from data, and the system’s response is measured [49].
This preserves sensor characteristics while still enabling
controlled anomaly timing.

Calibration is evaluated via probability integral trans-
form diagnostics on predicted measurement distributions
and via coverage tests on posterior credible intervals for
key summaries. For example, if the model predicts a
90% credible interval for surface pressure over a horizon,
the empirical frequency with which observed pressure
lies in that interval should be close to 90% under nom-
inal conditions. Miscalibration is expected under dis-
tribution shift; the evaluation should therefore include
stratified analysis across operating envelopes, such as dif-
ferent pump rates, mud weights, and choke regimes [50].
Reporting only global calibration can hide systematic
miscalibration in rare but critical regimes.

A second family of metrics concerns physical consis-
tency. Because the digital twin outputs inferred residu-

als such as effective source terms and friction corrections,
one can test whether these residuals remain sparse and
plausible under nominal conditions [51]. Excessive re-
liance on residuals indicates that the learned component
is compensating for systematic modeling errors, poten-
tially undermining interpretability. A useful diagnostic
is the fraction of time the posterior mass of eq exceeds a
small threshold under nominal segments; this should be
low and stable across wells if the model is robust. An-
other diagnostic is whether inferred regime embeddings
remain within expected bounds and transition smoothly
except when evidence supports abrupt changes.

Generalization is tested across geometry and orien-
tation by training on a subset of wells or loop configura-
tions and evaluating on others with different hydraulic
diameters, inclinations, and sensor characteristics [52].
The hybrid architecture is expected to generalize better
than a purely data-driven detector because conservation
structure is invariant. However, closure mismatch can
still be significant when fluids or cuttings load change.
The evaluation should therefore include out-of-distribution
tests such as altered rheology, delayed sensors, and un-
modeled choke nonlinearity [53]. Performance degra-
dation should be characterized not only by detection
accuracy but by increased uncertainty and by the sys-
tem’s ability to flag that it is extrapolating, for instance
through increased innovation variance and wider poste-
riors.

Implementation must respect real-time constraints.
The differentiable simulator should run faster than wall-
clock time at the chosen discretization. This motivates
adaptive spatial resolution: finer discretization near re-
gions of high compressibility or expected regime tran-
sition, coarser elsewhere [54]. It also motivates caching
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Indicator Description Typical use in operations
Pinflux(t) Posterior probability of

influx-like event class
Screening for potential
kicks and escalation risk

Expected influx
rate

Posterior mean of inferred
positive source term

Assessing severity and po-
tential growth of anomaly

Influx depth proba-
bility

Distribution of source loca-
tion along s

Prioritizing attention near
bit, shoe, or upper annulus

High-slip regime
probability

Chance of being in gas-
dominated transport
regime

Anticipating rapid gas mi-
gration and pressure re-
sponse

Pressure margin Distance to upper and lower
pressure constraints

Evaluating safety margins
under candidate control ac-
tions

Composite anomaly
score A (t)

Fusion of innovation and
residual metrics

Triggering alarms under
controlled false-alarm tar-
gets

Table 7. Representative risk indicators derived from the posterior distribution produced by the digital twin.

Jacobian structure for implicit steps and using ensemble
sizes that balance uncertainty representation with com-
putational cost. In many cases, an ensemble size M in
the tens can be sufficient for stable filtering if the model
is well-regularized, whereas particle filtering may require
more samples unless the latent dimension is aggressively
reduced.

Sensor pre-processing is another crucial factor [55].
The system must treat measurements as the output of
a sensor dynamics model, not as direct samples of the
physical variables. Low-pass filtering, rate limiting, and
quantization can introduce phase lags that shift anomaly
signatures in time, biasing latency estimates. The frame-
work therefore includes identification of sensor filters
from nominal data by fitting simple linear time-invariant
models, then incorporating them into h(·) so that the fil-
ter operates on physical predictions rather than on raw
data streams. This alignment reduces the temptation for
the learned residual to compensate for sensor artifacts
[56].

Finally, ablation studies are essential to verify that
each architectural element contributes to robustness rather
than merely increasing capacity. Ablations can remove
the regime embedding, remove closure residual learn-
ing, or remove probabilistic inference in favor of de-
terministic simulation with thresholding. The expec-
tation is that removing probabilistic inference will re-
duce calibration and robustness under partial observ-
ability, while removing physics constraints will increase
false positives under distribution shift [57]. These claims
must be tested empirically, but the framework is de-
signed to make such tests meaningful by reporting cali-
bration, residual plausibility, and stability alongside de-
tection metrics.

The evaluation framework thus aligns with the pa-

per’s thesis: a wellbore anomaly detector should be judged
by its ability to provide trustworthy probabilistic physi-
cal inference from surface signals, not only by accuracy
on a curated dataset. The concluding section summa-
rizes the contributions and outlines the main limitations
and future directions implied by the formulation.

7. Conclusion
This paper presented a physics-constrained, uncertainty-
aware digital-twin framework for real-time wellbore anomaly
detection using primarily surface measurements [58]. The
core idea is to treat detection as probabilistic state es-
timation in a structured dynamical system rather than
as a standalone classification task. A reduced-order an-
nular multiphase model provides conservation structure
and interpretability, while a learned closure residual cor-
rects only selected mismatches under hard physical con-
straints. A latent regime embedding enables soft, physi-
cally meaningful transitions without requiring brittle dis-
crete regime labels [59]. Online inference is performed
through approximate Bayesian filtering with constraint-
preserving transforms, producing calibrated posteriors
over latent states, closure corrections, and inferred source
terms. Anomaly detection is derived from innovation
statistics augmented by mechanistic residual decomposi-
tions, enabling differentiation between physical anoma-
lies, systematic modeling errors, and sensor inconsisten-
cies. A risk-aware decision-support layer maps poste-
rior outputs to constraint-aware advisories using short-
horizon stochastic prediction while explicitly accounting
for uncertainty.

The paper also proposed an evaluation framework
emphasizing detection latency under fixed false-alarm
control, calibration and coverage diagnostics, residual
plausibility under nominal conditions, and out-of-distribution
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Metric What it measures Notes for interpretation
Detection latency Time from anomaly onset

to alarm
Reported jointly with fixed
false-alarm rate

False-alarm rate Frequency of spurious
alarms in nominal data

Evaluated across operating
envelopes and wells

Calibration / cover-
age

Agreement between pre-
dicted and empirical
probabilities

Uses prediction intervals
and innovation statistics

Residual sparsity How often large source
residuals appear when nom-
inal

High values suggest overfit-
ting or model structural er-
rors

Regime consistency Plausibility and smooth-
ness of embedding trajecto-
ries

Checks for unrealistic
regime hopping without
evidence

OOD robustness Performance under geome-
try, fluid, or sensor shifts

Includes stress tests with al-
tered closures and delays

Computational
load

Cost relative to real-time re-
quirements

Considers ensemble size,
discretization, and solver
choice

Table 8. Evaluation metrics for assessing reliability and robustness of the anomaly detection digital twin.

generalization across geometries, orientations, and sen-
sor characteristics [60]. The formulation highlights that
reliability in this domain depends as much on calibrated
uncertainty and physical consistency as on nominal pre-
dictive accuracy.

Limitations follow directly from the assumptions made
for tractability: reduced-order models can omit higher-
dimensional effects, closure learning can still fail under
extreme distribution shift, and partial observability can
prevent unique localization without additional sensors.
These limitations motivate future work on adaptive dis-
cretization, richer yet still constrained closure manifolds,
and principled integration of intermittent downhole mea-
surements when available. Nonetheless, the proposed
digital twin provides a coherent mathematical basis for
translating surface evidence into probabilistic, physically
grounded anomaly assessments suitable for real-time op-
erational contexts [61].
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