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Abstract
Energy efficiency and coverage optimization are key challenges in the development of sixth-generation
(6G) wireless networks, particularly with the integration of Intelligent Reflecting Surfaces (IRS). Leveraging
IRS technology can significantly enhance signal propagation and network performance, but optimizing their
deployment under dynamic channel conditions remains a complex problem. This paper conducts an in-depth
analysis of energy efficiency and coverage optimization in 6G networks utilizing IRS-assisted communication.
We develop a novel mathematical framework that captures the intricate relationship between energy consumption
and coverage enhancement in IRS-based systems operating under fluctuating channel conditions. Using
stochastic geometry, we model the spatial distribution of IRS units and user equipment, while a tensor-based
representation is employed to characterize the multi-dimensional channel state information. To adapt to
time-varying wireless environments, we propose an adaptive phase-shift configuration protocol that dynamically
adjusts IRS elements, resulting in a 43% improvement in energy efficiency compared to static configurations.
Additionally, a deep reinforcement learning approach is integrated into our framework to optimize the balance
between coverage extension and power consumption, considering both direct and IRS-reflected transmission
paths. Extensive numerical simulations validate our theoretical insights, showing that the strategic deployment
of IRS units based on our optimization model can expand coverage by 68% in urban environments while
maintaining quality of service constraints. Moreover, we derive closed-form expressions for the probability of
coverage under Rician fading conditions, incorporating the effects of hardware impairments and phase noise in
IRS elements. These findings offer critical insights into the practical implementation of energy-efficient IRS
deployments, laying the groundwork for future advancements in 6G cellular networks.
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1. Introduction
The imminent deployment of sixth-generation (6G) wireless
communication networks promises unprecedented data rates,
ultra-low latency, and massive connectivity to support emerg-
ing applications such as holographic communications, ex-
tended reality, and autonomous systems [1]. These ambitious
performance metrics, however, come at the cost of signifi-
cantly increased energy consumption, posing substantial chal-
lenges to the sustainability and operational costs of future
wireless networks. The energy efficiency problem is further
exacerbated by the anticipated use of higher frequency bands
in 6G, which suffer from severe path loss and blockage ef-
fects, necessitating denser network deployments and higher
transmission powers [2, 3].

Intelligent Reflecting Surfaces (IRS) have emerged as a
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promising technology to enhance wireless communication sys-
tems by manipulating electromagnetic waves through passive
reflection [4]. An IRS consists of a large number of low-cost,
passive reflecting elements, each capable of independently
adjusting the phase shift of the impinging electromagnetic
waves, thereby enabling constructive combining of reflected
signals at intended receivers. This passive nature of IRS
presents a compelling advantage in terms of energy efficiency
compared to traditional active relaying technologies, as IRS
units operate without power-hungry radio frequency chains
for signal processing and amplification.

The fundamental principle behind IRS operation lies in the
reconfiguration of the wireless propagation environment itself,
rather than adapting to it as in conventional wireless systems.
By intelligently controlling the phase shifts of the reflecting
elements, IRS can create favorable channel conditions for
wireless communication, effectively extending coverage to
areas previously considered challenging due to blockages or
excessive path loss. This paradigm shift in wireless system
design offers new degrees of freedom for optimizing network
performance, particularly in terms of energy efficiency and
coverage extension. [5]

The potential benefits of IRS-assisted communication in
6G networks extend beyond mere energy savings and cover-
age enhancement. By providing additional signal propagation
paths, IRS can improve communication reliability, increase
spectral efficiency through spatial multiplexing gains, and
enhance physical layer security. Moreover, the passive nature
of IRS allows for environmentally friendly and visually unob-
trusive deployments, addressing both ecological concerns and
aesthetic considerations in dense urban environments.

Despite these promising attributes, the integration of IRS
into future wireless networks presents several technical chal-
lenges that require careful consideration. The optimization of
IRS configurations involves complex mathematical formula-
tions to determine the optimal phase shifts for a large number
of reflecting elements, often under dynamic channel condi-
tions and multiple users with potentially conflicting require-
ments. Additionally, accurate channel state information (CSI)
acquisition becomes particularly challenging in IRS-assisted
systems due to the passive nature of the reflecting elements,
which cannot perform channel estimation independently.

Previous research in IRS-assisted communication has pri-
marily focused on maximizing spectral efficiency or signal-to-
noise ratio under perfect CSI assumptions and static channel
conditions. While these studies provide valuable insights into
the fundamental performance limits of IRS technology, they
often overlook the practical constraints related to energy ef-
ficiency, imperfect CSI, and dynamic wireless environments
that characterize real-world deployments. Furthermore, the
existing literature typically addresses the design of IRS con-
figurations for single-cell scenarios with a limited number of
users, leaving the analysis of large-scale multi-cell networks
with IRS largely unexplored. [6]

In this paper, we address these limitations by developing

a comprehensive mathematical framework for analyzing and
optimizing energy efficiency and coverage in IRS-assisted
6G networks under realistic deployment scenarios. We con-
sider dynamic channel conditions, imperfect CSI, hardware
impairments, and large-scale network deployments to provide
insights that are both theoretically sound and practically rele-
vant. Our approach combines tools from stochastic geometry,
tensor analysis, and deep reinforcement learning to formulate
and solve the complex optimization problems associated with
IRS deployment and configuration.

The key contributions of this paper can be summarized
as follows. First, we develop a stochastic geometry-based
framework to model the spatial distribution of IRS units, base
stations, and user equipment in a large-scale network, en-
abling the analysis of coverage probability and energy effi-
ciency from a system-level perspective. Second, we propose a
tensor-based representation of the multidimensional channel
state information in IRS-assisted systems, facilitating efficient
processing and optimization of IRS configurations. Third,
we design an adaptive phase-shift configuration protocol that
dynamically adjusts to time-varying channel conditions, sig-
nificantly improving energy efficiency compared to static
configurations. Fourth, we formulate a deep reinforcement
learning approach to optimize the trade-off between coverage
extension and power consumption, considering both direct
and IRS-reflected transmission paths [7]. Finally, we derive
closed-form expressions for the probability of coverage under
Rician fading channels, accounting for hardware impairments
and phase noise at the IRS elements.

The remainder of this paper is organized as follows. In
Section 2, we present the system model and problem formula-
tion. Section 3 introduces our stochastic geometry framework
for analyzing large-scale IRS deployments. In Section 4, we
develop the tensor-based channel representation and adaptive
phase-shift configuration protocol. Section 5 presents the
deep reinforcement learning approach for joint optimization
of coverage and energy efficiency. Numerical results and per-
formance evaluation are provided in Section 6, followed by
concluding remarks in Section 7.

2. System Model and Problem
Formulation

We consider a downlink wireless communication system op-
erating in a 6G network environment, where multiple base
stations (BSs) serve numerous user equipment (UEs) with the
assistance of strategically deployed IRS units. The spatial dis-
tribution of network elements is modeled as a heterogeneous
Poisson point process (PPP), with BSs, IRS units, and UEs
following independent PPPs with intensities λB, λI , and λU ,
respectively [8]. Each IRS consists of N passive reflecting
elements arranged in a uniform planar array configuration, ca-
pable of independently adjusting the phase shift of the incident
electromagnetic waves.

The propagation environment is characterized by a com-
bination of line-of-sight (LoS) and non-line-of-sight (NLoS)
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paths, with the probability of LoS connectivity decreasing ex-
ponentially with distance according to PLoS(d) = e−βd , where
β is an environment-dependent parameter and d represents
the distance between the transmitter and receiver. The chan-
nel coefficients for LoS and NLoS paths follow Rician and
Rayleigh fading distributions, respectively, with appropriate
path loss exponents αLoS and αNLoS.

For a typical UE located at position xu, the received signal
can be expressed as the superposition of the direct signal from
the serving BS located at xb and the reflected signals from all
IRS units in the vicinity. Mathematically, the received signal
at the UE can be written as:

yu =
√

Pt

(
hH

bus+∑
NI
i=1 hH

iu ihbis
)
+nu

where Pt represents the transmit power of the BS, s de-
notes the transmitted symbol with unit power, hbu ∈ CM×1

is the channel vector from the BS to the UE, hbi ∈ CM×N

is the channel matrix from the BS to the i-th IRS, hiu ∈
CN×1 is the channel vector from the i-th IRS to the UE,

i = diag(e jθi1 ,e jθi2 , . . . ,e jθiN ) represents the phase-shift ma-
trix of the i-th IRS with θin denoting the phase shift introduced
by the n-th element of the i-th IRS, and nu ∼ C N (0,σ2) is
the additive white Gaussian noise (AWGN) at the UE.

To account for hardware impairments and phase noise
at the IRS elements, we model the actual phase shift imple-
mented by the n-th element of the i-th IRS as θ̃in = θin +∆θin,
where ∆θin ∼ N (0,σ2

θ
) represents the phase noise follow-

ing a Gaussian distribution with variance σ2
θ

. The imperfect
phase shift implementation modifies the phase-shift matrix to
˜ i = diag(e jθ̃i1 ,e jθ̃i2 , . . . ,e jθ̃iN ).

The signal-to-interference-plus-noise ratio (SINR) at the
typical UE can be expressed as:

γu =
Pt

∣∣∣hH
bu+∑

NI
i=1 hH

iu ˜ ihbi

∣∣∣2
∑ j∈ΦB\{b} Pt

∣∣∣hH
ju+∑

NI
i=1 hH

iu ˜ ih ji

∣∣∣2+σ2

where ΦB \{b} represents the set of interfering BSs.
The coverage probability for a given SINR threshold γth

is defined as:
Pcov(γth) = P(γu > γth)

which represents the probability that the SINR at the typi-
cal UE exceeds the threshold γth.

The energy efficiency of the system, measured in bits per
Joule, is defined as the ratio of the achievable data rate to the
total power consumption:

ηEE =
B log2(1+γu)

Ptotal
where B is the system bandwidth, and Ptotal represents

the total power consumption, which includes the transmit
power of the BS, the circuit power consumption of the BS,
and the power consumed by the IRS controller for phase shift
adjustments. Specifically, Ptotal can be expressed as:

Ptotal =
Pt

ηPA
+PBS,0 +∑

NI
i=1(PIRS,0 +N ·Pele)

where ηPA is the efficiency of the power amplifier at the
BS, PBS,0 is the fixed circuit power consumption of the BS,
PIRS,0 is the fixed power consumption of the IRS controller,
and Pele is the power consumption per reflecting element for
phase shift adjustment.

Under dynamic channel conditions, the channel coeffi-
cients hbu, hbi, and hiu evolve over time according to a first-
order Markov process:

h(t +1) = ρh(t)+
√

1−ρ2w(t)
where ρ = J0(2π fdTs) is the temporal correlation coeffi-

cient, J0(·) is the zeroth-order Bessel function of the first kind,
fd is the maximum Doppler frequency, Ts is the sampling
period, and w(t)∼ C N (0,I) is a complex Gaussian random
vector.

Given this system model, our objective is to jointly opti-
mize the deployment of IRS units and their phase-shift con-
figurations to maximize the energy efficiency while ensuring
adequate coverage throughout the network. The optimization
problem can be formulated as:

maxλI ,{˜ i} ηEE s.t. Pcov(γth)≥Ptarget θ̃in ∈ [0,2π),∀i,n
λI ≤ λI,max

where Ptarget is the target coverage probability, and λI,max
is the maximum allowable deployment density of IRS units
due to practical constraints.

This optimization problem is challenging due to several
factors: (1) the complex expression of the SINR involving
multiple IRS units and interfering BSs, (2) the large number
of optimization variables corresponding to the phase shifts of
all reflecting elements across all IRS units, (3) the stochastic
nature of the network topology and channel conditions, and
(4) the dynamic evolution of the channel coefficients over time.
In the following sections, we develop novel methodologies to
address these challenges and solve the optimization problem
efficiently. [9]

3. Stochastic Geometry Analysis for
Large-Scale IRS Deployments

To analyze the performance of large-scale IRS deployments
in 6G networks, we employ tools from stochastic geometry to
characterize the distribution of network elements and derive
analytical expressions for coverage probability and energy
efficiency. The key advantage of this approach is its ability
to capture the spatial randomness of wireless networks while
providing tractable mathematical expressions for system per-
formance metrics.

We begin by deriving the distribution of the equivalent
channel gain between a typical BS-UE pair with the assis-
tance of IRS units. Let geq = |hH

bu+∑
NI
i=1 hH

iu ˜ ihbi|2 denote the
equivalent channel gain. Under the assumptions of our system
model, the exact distribution of geq is challenging to obtain
due to the complex interactions between multiple signal paths.
However, we can approximate it using a gamma distribution
based on moment matching:

geq ∼ Gamma(keq,θeq)
where the shape parameter keq and scale parameter θeq are

determined by matching the first and second moments of the
equivalent channel gain:

keq =
(E[geq])

2

Var[geq]

θeq =
Var[geq]
E[geq]
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The expected value of the equivalent channel gain can be
expressed as:

E[geq] = E
[
|hH

bu|2
]
+E

[∣∣∣∑NI
i=1 hH

iu ˜ ihbi

∣∣∣2]
+2E

[
Re

{
hH

bu ∑
NI
i=1 hH

iu ˜ ihbi

}]
For a BS equipped with M antennas, the expected value of
the direct channel gain is E[|hH

bu|2] = M ·L(dbu), where L(dbu)
is the path loss at distance dbu between the BS and UE. The
expected value of the reflected channel gain depends on the
spatial distribution of IRS units and their configurations. Us-
ing Campbell’s theorem from point process theory, we can
express it as:

E
[∣∣∣∑NI

i=1 hH
iu ˜ ihbi

∣∣∣2]= λI
∫

R2 E[|hH
xu ˜xhbx|2]dx

where the integration is performed over the two-dimensional
space R2, and E[|hH

xu ˜xhbx|2] represents the expected reflected
channel gain from an IRS located at position x. For optimal
phase shift configurations that maximize the constructive com-
bination of reflected signals, this term can be approximated
as N2 ·L(dbx) ·L(dxu) · e−σ2

θ , where L(dbx) and L(dxu) are the
path losses for the BS-IRS and IRS-UE links, respectively,
and the exponential term accounts for the impact of phase
noise.

The third term in the expression for E[geq] represents the
correlation between the direct and reflected paths. Under
the assumption of independent Rayleigh fading for different
paths, this term vanishes for random phase shift configura-
tions. However, for optimized phase shifts that align the
phases of the reflected signals with the direct signal, this
term becomes positive and can be approximated as 2M

√
N ·√

L(dbu) ·L(dbx) ·L(dxu) · e−σ2
θ
/2.

Using similar techniques, we can derive the variance of the
equivalent channel gain, which completes the characterization
of its distribution. [10]

With the distribution of the equivalent channel gain estab-
lished, we can derive the coverage probability by analyzing
the distribution of the SINR. The SINR at the typical UE can
be rewritten as:

γu =
Pt geq

∑ j∈ΦB\{b} Pt g j+σ2

where g j represents the equivalent channel gain from the
j-th interfering BS to the typical UE, including both direct
and IRS-reflected paths.

The coverage probability can then be expressed as:

Pcov(γth) = P(SINR > γth) = E

[
e−

γthσ2

Pt geq ·LI

(
γth
geq

)]
where LI(s) is the Laplace transform of the interference

power distribution evaluated at s. Using the properties of
PPP and the gamma approximation for the equivalent channel
gain, we can derive a closed-form expression for the coverage
probability:

Pcov(γth) =∫
∞

0 e−
γthσ2

Pt x exp
(
−2πλB

∫
∞

R0

(
1−Eg j

[
e−

γthPt g j
Pt x

])
rdr

)
fgeq(x)dx

where R0 is the minimum distance between the typical

UE and interfering BSs, and fgeq(x) is the probability density
function (PDF) of the equivalent channel gain geq.

To evaluate this integral, we approximate the interference
as a shot noise process and leverage the moment-generating
function of the gamma distribution. After mathematical ma-
nipulations, the coverage probability can be approximated
as:

Pcov(γth)≈(
1+ γthσ2

Pt keqθeq

)−keq
exp

(
−πλBR2

0

(
γth

kIθI

)δ

Γ(1+δ )Γ(kI −δ )/Γ(kI)

)
where δ = 2/α with α being the path loss exponent, kI

and θI are the shape and scale parameters of the gamma distri-
bution approximating the interference channel gain, and Γ(·)
is the gamma function.

Building on this coverage probability expression, we can
analyze the energy efficiency of the system. The average
energy efficiency can be computed as: [11]

η̄EE =
B·E[log2(1+γu)]

Ptotal
where the expectation is taken over the distribution of the

SINR γu. The expectation of the logarithmic function can be
computed using the following identity:

E[log2(1+ γu)] =
1

ln(2)
∫

∞

0
Pcov(z)

1+z dz
This integral can be evaluated numerically using the de-

rived expression for the coverage probability.
The analysis presented in this section provides a theoret-

ical foundation for understanding the performance of large-
scale IRS deployments in 6G networks. The derived expres-
sions for coverage probability and energy efficiency capture
the impact of key system parameters, including the density of
IRS units, the number of reflecting elements, the BS transmit
power, and the phase noise variance. These analytical results
enable us to gain insights into the fundamental performance
limits of IRS-assisted communication and guide the optimiza-
tion of system parameters for maximizing energy efficiency
while ensuring coverage requirements.

4. Tensor-Based Channel Representation
and Adaptive Phase-Shift Configuration

The effectiveness of IRS-assisted communication heavily de-
pends on the configuration of phase shifts at the reflecting
elements. In this section, we develop a tensor-based approach
for representing the multidimensional channel information in
IRS-assisted systems and propose an adaptive phase-shift con-
figuration protocol that dynamically responds to time-varying
channel conditions.

We begin by formulating a tensor representation of the
channel state information [12]. In an IRS-assisted commu-
nication system with multiple BSs, multiple IRS units, and
multiple UEs, the channel information can be naturally repre-
sented as a high-dimensional tensor. Specifically, we define
a fourth-order tensor H ∈ CB×I×N×U , where B, I, N, and U
represent the number of BSs, IRS units, reflecting elements
per IRS, and UEs, respectively. The element Hbinu of this
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tensor corresponds to the complex channel coefficient from
the b-th BS to the u-th UE via the n-th element of the i-th IRS.

This tensor representation allows us to capture the intri-
cate relationships between different network elements and
facilitates the application of tensor decomposition techniques
for efficient processing of channel information. Specifically,
we employ the canonical polyadic (CP) decomposition to
approximate the channel tensor as a sum of rank-one tensors:

H ≈ ∑
R
r=1 ar ◦br ◦ cr ◦dr

where R is the tensor rank, ◦ denotes the outer product,
and ar ∈ CB, br ∈ CI , cr ∈ CN , and dr ∈ CU are the factor
vectors for the r-th component. This decomposition reduces
the dimensionality of the channel information and enables
more efficient processing and optimization.

Based on this tensor representation, we propose an adap-
tive phase-shift configuration protocol that dynamically ad-
justs to time-varying channel conditions. The key idea is to
update the phase shifts of the reflecting elements in response
to changes in the channel conditions while minimizing the
overhead of channel estimation and reconfiguration.

The adaptive protocol operates in a time-slotted manner,
with each time slot consisting of a channel estimation phase
and a data transmission phase. In the channel estimation
phase, pilot signals are transmitted to acquire information
about the current channel state [13]. Instead of estimating
the complete channel tensor, which would incur substantial
overhead, we estimate only the dominant factors of the CP
decomposition using compressed sensing techniques.

Specifically, we formulate the channel estimation problem
as a sparse recovery problem:

min{ar ,br ,cr ,dr} ∥y− vec(∑R
r=1 ar ◦br ◦cr ◦dr)∥2

2+λ ∑
R
r=1(∥ar∥1+

∥br∥1 +∥cr∥1 +∥dr∥1)

where y represents the received pilot signals, is the mea-
surement matrix determined by the pilot signal design, vec(·)
denotes the vectorization operation, and λ is a regularization
parameter that controls the sparsity of the solution. This for-
mulation allows us to estimate the dominant factors of the
channel tensor with a reduced number of pilot signals, thereby
decreasing the overhead of channel estimation.

Once the factors of the channel tensor are estimated, we
can determine the optimal phase shifts for the reflecting el-
ements of each IRS. For a specific BS-UE pair (b,u), the
optimal phase shift for the n-th element of the i-th IRS can be
computed as:

θ ∗
inu = arg(−Hbinu)− arg

(
hH

bu

)
where arg(·) denotes the phase angle of a complex number.

This phase shift alignment ensures that the reflected signal
from the IRS constructively combines with the direct signal
at the UE, maximizing the received signal power.

In a multi-user scenario, where different UEs may require
different phase shift configurations, we propose a weighted
sum approach to determine the phase shifts:

θ ∗
in = arg

(
∑

U
u=1 wue jθ∗

inu
)

where wu is the weight assigned to the u-th UE, which
can be determined based on factors such as priority, quality of

service requirements, or fairness considerations. [14]
To adapt to time-varying channel conditions, we use the

temporal correlation of the channel to predict future channel
states and proactively adjust the phase shifts. Specifically, we
employ a Kalman filter to track the evolution of the channel
factors over time:

x(t +1) = Fx(t)+q(t) z(t) = Hx(t)+v(t)
where x(t) represents the state vector containing the real

and imaginary parts of the channel factors, F is the state transi-
tion matrix determined by the temporal correlation coefficient
ρ , q(t) is the process noise, z(t) is the measurement vector
obtained from pilot signals, H is the measurement matrix, and
v(t) is the measurement noise.

The Kalman filter provides the minimum mean square er-
ror (MMSE) estimate of the channel factors based on the past
and current measurements, enabling us to track the channel
variations accurately with reduced pilot overhead. Using the
predicted channel factors, we can update the phase shifts of
the reflecting elements to maintain optimal performance under
dynamic channel conditions.

To further reduce the reconfiguration overhead, we em-
ploy a selective update strategy that adjusts the phase shifts
only when significant changes in the channel conditions are
detected. Specifically, we define a threshold τ for the change
in the equivalent channel gain, and update the phase shifts
only if:∣∣geq(t)−geq(t −1)

∣∣> τ ·geq(t −1)
where geq(t) is the equivalent channel gain at time t.
The proposed adaptive phase-shift configuration protocol

strikes a balance between performance and overhead, dynami-
cally responding to changes in the channel conditions while
minimizing the resources required for channel estimation and
reconfiguration. Numerical simulations, presented in Section
6, demonstrate that this adaptive approach achieves signifi-
cant improvements in energy efficiency compared to static
configurations, particularly in environments with moderate to
high mobility. [2]

5. Deep Reinforcement Learning for Joint
Optimization of Coverage and Energy

Efficiency
The optimization of IRS deployment and configuration in-
volves a complex trade-off between coverage extension and
energy consumption. Traditional optimization approaches of-
ten struggle with the high dimensionality of the problem, the
non-convexity of the objective function, and the stochastic na-
ture of the wireless environment. In this section, we propose a
deep reinforcement learning (DRL) framework to tackle these
challenges and achieve joint optimization of coverage and
energy efficiency in IRS-assisted 6G networks.

The DRL framework formulates the optimization problem
as a Markov decision process (MDP), where an agent interacts
with the environment by taking actions and receiving rewards,
with the goal of learning a policy that maximizes the cumu-
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lative reward over time. In our context, the state represents
the current network conditions and IRS configurations, the
actions correspond to decisions on IRS deployment and phase-
shift adjustments, and the reward reflects the performance
metrics of interest, namely energy efficiency and coverage.

We define the state space, action space, and reward func-
tion of the MDP as follows:

The state space S includes: - The locations of BSs, IRS
units, and UEs, represented by their coordinates - The channel
conditions between different network elements, captured by
the dominant factors of the channel tensor - The current phase-
shift configurations of all IRS units [3] - The SINR and data
rate experienced by each UE - The power consumption of the
network

The action space A consists of: - Deployment decisions:
whether to deploy a new IRS unit and where to place it -
Configuration decisions: adjustments to the phase shifts of
the reflecting elements

The reward function R(s,a) for taking action a in state s
is designed to balance energy efficiency and coverage:

R(s,a) = α · ηEE
ηmax

EE
+(1−α) · Pcov

Ptarget

where ηEE is the current energy efficiency, ηmax
EE is the

maximum achievable energy efficiency, Pcov is the current
coverage probability, Ptarget is the target coverage probability,
and α ∈ [0,1] is a weighting parameter that controls the trade-
off between energy efficiency and coverage.

To handle the high-dimensional and continuous state and
action spaces, we employ a deep deterministic policy gradient
(DDPG) approach, which combines the advantages of deep
neural networks and actor-critic reinforcement learning meth-
ods. The DDPG algorithm consists of four neural networks:
an actor network, a critic network, and their corresponding
target networks for stable training.

The actor network µ(s|θ µ) maps states to actions, de-
termining the IRS deployment and configuration decisions
based on the current network conditions. The critic network
Q(s,a|θ Q) estimates the action-value function, which repre-
sents the expected cumulative reward of taking action a in
state s and following the policy thereafter [15]. The target
networks µ ′(s|θ µ ′

) and Q′(s,a|θ Q′
) are used to stabilize the

training process by providing consistent target values for the
temporal difference (TD) updates.

The actor and critic networks are trained using the follow-
ing loss functions:

L(θ Q) = 1
N ∑i

(
yi −Q(si,ai|θ Q)

)2

∇θ µ J ≈ 1
N ∑i ∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|s=si

where yi = ri + γQ′(si+1,µ
′(si+1|θ µ ′

)|θ Q′
) is the target

value for the critic network, ri is the immediate reward, γ is
the discount factor, and N is the batch size.

To enhance the exploration capability of the agent, we add
noise to the actions generated by the actor network during
training:

at = µ(st |θ µ)+Nt
where Nt is the exploration noise, which we generate

using an Ornstein-Uhlenbeck process to introduce temporally

correlated noise suitable for control problems.
Given the complexity of the IRS optimization problem,

we adopt a hierarchical approach to decompose it into man-
ageable subproblems:

At the higher level, a strategic agent makes decisions
about IRS deployment, determining whether to deploy new
IRS units and where to place them. This agent operates on
a longer time scale, typically making decisions when signif-
icant changes in the network topology or traffic patterns are
detected.

At the lower level, tactical agents optimize the phase-shift
configurations of the deployed IRS units to maximize the
immediate performance. These agents operate on a shorter
time scale, adapting to dynamic channel conditions and user
mobility.

The hierarchical approach allows for efficient manage-
ment of the exploration-exploitation trade-off, with the strate-
gic agent focusing on long-term planning and the tactical
agents addressing short-term adaptation. It also reduces the
dimensionality of the action space for each agent, making the
learning problem more tractable. [16]

To address the challenge of partial observability in the
wireless environment, we incorporate a belief state representa-
tion that captures uncertainty about the true state of the system.
Specifically, we employ a recurrent neural network (RNN)
structure in the actor and critic networks to maintain a memory
of past observations and actions, enabling the agent to make
more informed decisions based on the history of interactions
with the environment.

The proposed DRL framework is trained in a simulated en-
vironment that captures the key characteristics of IRS-assisted
6G networks, including spatial distributions of network ele-
ments, channel dynamics, and energy consumption models.
To accelerate the training process and improve sample effi-
ciency, we employ experience replay and prioritized sampling
techniques, where experiences are stored in a replay buffer
and sampled according to their temporal difference errors.

Once trained, the DRL agent provides a policy that maps
network states to optimal IRS deployment and configuration
decisions, maximizing energy efficiency while ensuring cov-
erage requirements. The policy can be implemented as a
closed-loop control system that continuously monitors the net-
work conditions and adjusts the IRS parameters accordingly.

One key advantage of the DRL approach is its ability to
learn from experience and adapt to changing conditions with-
out requiring explicit models of the system dynamics. This
makes it well-suited for the complex and dynamic nature of
wireless networks, where analytical models may be intractable
or inaccurate due to simplifying assumptions. [17]

Moreover, the DRL framework can incorporate various
constraints and objectives in a unified manner, facilitating
the joint optimization of multiple performance metrics. By
adjusting the reward function and constraint handling mecha-
nisms, the framework can be tailored to different deployment
scenarios and operator preferences.
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To enhance the robustness of the learned policy against un-
certainties in channel estimation and prediction, we introduce
a risk-sensitive reinforcement learning approach that consid-
ers the worst-case performance under parameter variations.
Specifically, we modify the objective function to include a
risk term that penalizes high variance in the expected return:

Jrisk(θ) = E[∑∞
t=0 γ trt ]−λ

√
Var[∑∞

t=0 γ trt ]
where λ is a risk-aversion parameter that controls the

trade-off between expected return and risk.
Furthermore, to ensure that the learned policy satisfies the

coverage constraints consistently, we employ a constrained
reinforcement learning approach based on the Lagrangian
relaxation method. The constrained optimization problem is
transformed into an unconstrained problem by incorporating
the constraint into the objective function with a Lagrange
multiplier:

L(θ ,λ ) = E[∑∞
t=0 γ trt ]−λE[∑∞

t=0 γ t(Ptarget −Pcov(st))]
The Lagrange multiplier λ is updated using gradient as-

cent to ensure that the constraint is satisfied at convergence:
λk+1 = [λk +αλE[∑∞

t=0 γ t(Ptarget −Pcov(st))]]+
where [·]+ denotes the projection onto the non-negative

orthant, and αλ is the learning rate for the Lagrange multiplier.
The proposed DRL framework provides a powerful and

flexible approach for optimizing the deployment and config-
uration of IRS units in 6G networks, achieving significant
improvements in energy efficiency while ensuring adequate
coverage [18]. Numerical results presented in the next sec-
tion demonstrate the effectiveness of this approach in various
deployment scenarios and channel conditions.

6. Numerical Results and Performance
Evaluation

In this section, we present comprehensive numerical results
to evaluate the performance of the proposed frameworks and
algorithms for energy-efficient and coverage-enhanced IRS-
assisted 6G communication. We consider a realistic urban
deployment scenario with parameters chosen to reflect typical
6G network characteristics and constraints.

The simulation setup consists of a square area of 1 km ×
1 km with BSs deployed according to a PPP with intensity
λB = 5 BSs/km2. Each BS is equipped with M = 64 anten-
nas and operates at a carrier frequency of 28 GHz with a
bandwidth of 400 MHz. UEs are distributed according to a
PPP with intensity λU = 50 UEs/km2. IRS units, each with
N = 256 reflecting elements arranged in a 16× 16 uniform
planar array, are deployed strategically following the optimiza-
tion outcomes of our proposed frameworks.

For the channel model, we consider a combination of
LoS and NLoS paths with probabilities determined by the
3GPP urban microcell model [19]. The path loss exponents
are set to αLoS = 2.2 and αNLoS = 3.67 for LoS and NLoS
paths, respectively. The Rician K-factor for LoS paths is set
to 10 dB. The maximum Doppler frequency is set to fd = 10
Hz, corresponding to pedestrian mobility with a speed of
approximately 1 m/s at the considered carrier frequency.

For the power consumption model, we set the BS trans-
mit power to Pt = 30 dBm, the power amplifier efficiency to
ηPA = 0.4, the fixed circuit power consumption of the BS to
PBS,0 = 9 W, the fixed power consumption of the IRS con-
troller to PIRS,0 = 0.5 W, and the power consumption per
reflecting element for phase shift adjustment to Pele = 5 mW.
The target coverage probability is set to Ptarget = 0.9 with an
SINR threshold of γth = 0 dB.

We first evaluate the accuracy of our analytical frame-
work for predicting the coverage probability in IRS-assisted
networks. Figure 1 compares the analytical approximation
derived in Section 3 with Monte Carlo simulations for dif-
ferent IRS deployment densities and numbers of reflecting
elements. The results show that our gamma approximation
for the equivalent channel gain provides a close match to the
simulated coverage probability, with an average relative er-
ror of less than 5% across the considered parameter range.
The accuracy of the approximation improves as the number
of reflecting elements increases, validating the asymptotic
behavior predicted by our theoretical analysis.

Next, we investigate the impact of IRS deployment density
on the energy efficiency and coverage of the network. Figure
2 shows the energy efficiency (in bits/Joule) and coverage
probability as functions of the IRS deployment density λI for
different numbers of reflecting elements per IRS. As expected,
both energy efficiency and coverage probability increase with
the IRS deployment density, but with diminishing returns
beyond a certain point [20]. Specifically, the energy efficiency
reaches its maximum at an optimal deployment density of
approximately λI = 15 IRS/km2 for N = 256, after which it
starts to decrease due to the increased power consumption of
IRS controllers and reflecting elements. This result highlights
the importance of optimizing the IRS deployment density to
balance the benefits of improved signal quality against the
additional power consumption.

Figure 3 illustrates the trade-off between energy efficiency
and coverage by plotting the Pareto frontier obtained from our
DRL-based joint optimization framework. Each point on the
frontier represents a non-dominated solution in terms of en-
ergy efficiency and coverage probability, obtained by varying
the weighting parameter α in the reward function. The results
demonstrate that significant improvements in both metrics
can be achieved simultaneously through intelligent deploy-
ment and configuration of IRS units. Specifically, compared
to a baseline scenario without IRS, our optimized solution
achieves a 2.4× increase in energy efficiency while main-
taining the same coverage probability, or a 68% increase in
coverage area while maintaining the same energy efficiency.

We then evaluate the performance of our adaptive phase-
shift configuration protocol under dynamic channel conditions.
Figure 4 shows the time evolution of the received SINR at a
representative UE for different phase-shift adaptation strate-
gies: (i) static configuration, where the phase shifts are opti-
mized based on initial channel conditions and remain fixed
thereafter, (ii) periodic adaptation, where the phase shifts are
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updated at regular intervals regardless of channel variations,
and (iii) our proposed adaptive protocol with selective updates
based on channel dynamics [21]. The results demonstrate that
the adaptive protocol maintains a consistently high SINR by
adjusting the phase shifts in response to significant channel
changes, while avoiding unnecessary reconfigurations dur-
ing periods of relative channel stability. Quantitatively, the
adaptive protocol achieves an average SINR improvement of
4.6 dB compared to the static configuration and requires 62%
fewer reconfigurations than the periodic adaptation strategy.

Figure 5 presents a more comprehensive comparison of
different phase-shift adaptation strategies in terms of energy
efficiency under varying user mobility conditions, character-
ized by the maximum Doppler frequency fd . As the mobility
increases, the channel coherence time decreases, necessitat-
ing more frequent phase-shift updates to maintain optimal
performance. The static configuration suffers from severe per-
formance degradation at higher mobility, while the periodic
adaptation strategy maintains reasonable performance but at
the cost of increased reconfiguration overhead. Our adaptive
protocol achieves the best trade-off, with energy efficiency
improvements of up to 43% compared to static configura-
tions and 27% compared to periodic adaptation at moderate
mobility levels ( fd = 20 Hz).

Finally, we evaluate the performance of our DRL-based
optimization framework and compare it with several bench-
mark algorithms: (i) random deployment with optimized
phase shifts, (ii) greedy deployment that maximizes coverage
without considering energy efficiency, and (iii) a conventional
convex optimization approach that uses simplifying assump-
tions about the system model. Figure 6 shows the convergence
behavior of the DRL algorithm during training, with the aver-
age reward steadily increasing and eventually stabilizing after
approximately 10,000 episodes. The final policy achieves
a reward that is 35% higher than the best benchmark algo-
rithm, demonstrating the effectiveness of the learning-based
approach for this complex optimization problem. [22]

Figure 7 compares the energy efficiency achieved by dif-
ferent algorithms under varying traffic loads, represented by
the UE density λU . The DRL-based approach consistently
outperforms the benchmarks across all traffic conditions, with
the advantage becoming more pronounced at higher UE den-
sities. This result highlights the ability of the learning-based
approach to adapt to different network conditions and opti-
mize the IRS deployment and configuration accordingly. At
the highest considered UE density of λU = 100 UEs/km2,
the DRL approach achieves an energy efficiency that is 1.9×
higher than random deployment, 1.6× higher than greedy
deployment, and 1.3× higher than conventional optimization.

Table 1 summarizes the key performance metrics for dif-
ferent deployment strategies under our baseline scenario with
λU = 50 UEs/km2. The metrics include energy efficiency (in
bits/Joule), coverage probability, average user throughput (in
Mbps), and deployment cost (normalized to the cost of a BS).
The results show that our DRL-based joint optimization ap-

proach achieves the best overall performance, with significant
improvements in energy efficiency and coverage compared to
the benchmarks, while maintaining a reasonable deployment
cost.

To assess the practical implications of our findings, we
conduct a case study for a specific urban area with known
building layouts and traffic patterns [23]. Figure 8 shows the
optimized IRS deployment obtained from our DRL frame-
work, with IRS units strategically placed to extend coverage
to areas with poor direct connectivity due to blockages, while
maintaining high energy efficiency. The heat map overlay
indicates the SINR distribution across the area, demonstrat-
ing that the optimized deployment achieves comprehensive
coverage with minimal energy consumption.

In summary, our numerical results validate the theoretical
frameworks developed in this paper and demonstrate the sig-
nificant performance benefits of intelligent IRS deployment
and configuration in 6G networks. The proposed adaptive
phase-shift protocol and DRL-based optimization approach
achieve substantial improvements in both energy efficiency
and coverage compared to conventional methods, highlight-
ing the potential of IRS technology to address the energy
consumption and coverage challenges in future wireless net-
works.

7. Conclusion
This paper has presented a comprehensive framework for ana-
lyzing and optimizing energy efficiency and coverage in IRS-
assisted 6G wireless communication networks under dynamic
channel conditions. We have developed novel methodologies
that address the fundamental challenges associated with the
deployment and configuration of IRS technology in large-
scale wireless networks, providing both theoretical insights
and practical solutions for system design and optimization.

Our stochastic geometry analysis has established the math-
ematical foundation for understanding the performance of IRS
deployments from a system-level perspective, capturing the
spatial randomness of network elements and deriving analyti-
cal expressions for coverage probability and energy efficiency.
The tensor-based channel representation and adaptive phase-
shift configuration protocol have demonstrated the importance
of dynamic reconfiguration in time-varying wireless envi-
ronments, achieving significant performance improvements
compared to static approaches. Furthermore, our deep rein-
forcement learning framework has showcased the potential
of learning-based approaches for joint optimization of IRS
deployment and configuration, effectively balancing the trade-
off between energy efficiency and coverage under various
network conditions. [24]

The numerical results have validated our theoretical frame-
works and demonstrated that strategic deployment and intelli-
gent configuration of IRS units can extend coverage by up to
68% in urban environments while maintaining quality of ser-
vice constraints, and improve energy efficiency by up to 43%
compared to static configurations. These findings highlight
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the transformative potential of IRS technology in address-
ing the sustainability and coverage challenges of future 6G
networks.

Several promising directions for future research emerge
from this work. First, the integration of IRS with other emerg-
ing technologies, such as reconfigurable intelligent metasur-
faces and fluid antenna systems, warrants investigation to
further enhance the flexibility and performance of wireless net-
works. Second, the consideration of multi-band and wideband
operation introduces additional complexities in IRS configu-
ration, necessitating novel approaches for frequency-selective
optimization. Third, the security and privacy implications
of IRS deployment deserve careful examination, as the ma-
nipulation of the propagation environment may create new
vulnerabilities or opportunities for secure communication. Fi-
nally, experimental validation of the proposed frameworks in
real-world testbeds would provide valuable insights into prac-
tical implementation challenges and performance in realistic
deployment scenarios.

This paper contributes to the advancement of energy-
efficient and coverage-enhanced wireless communication through
the integration of IRS technology. The developed frameworks
and algorithms provide valuable tools for the design and opti-
mization of future 6G networks, paving the way for sustain-
able and ubiquitous connectivity in the next generation of
wireless systems. [25]
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