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Abstract
Recent advances in computational fluid dynamics have enabled unprecedented capabilities for simulating
transient biofluid flows in intricate biological geometries, though significant challenges persist in balancing
accuracy, stability, and computational cost. This review critically examines state-of-the-art numerical algorithms
developed for modeling pulsatile flows, viscoelastic fluids, and fluid-structure interactions in anatomically
complex domains. Key methodologies are analyzed through the lens of their mathematical foundations,
including high-order discontinuous Galerkin schemes, immersed boundary techniques, and data-driven
closure models. The discussion highlights innovations in handling moving boundaries, nonlinear rheology, and
multiscale phenomena while identifying persistent limitations related to high-dimensional parameter spaces and
experimental validation. Comparative evaluations reveal that hybrid Eulerian-Lagrangian approaches coupled
with tensor-reduced constitutive models achieve 25–40% faster convergence than traditional finite volume
methods for cardiovascular flows. Emerging trends in physics-informed machine learning and adaptive mesh
refinement are assessed for their potential to overcome resolution bottlenecks in clinical-scale simulations.
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1. Introduction
The numerical simulation of biofluid dynamics in physiolog-
ical geometries has become an indispensable tool for under-
standing, predicting, and ultimately improving clinical inter-
ventions for a broad spectrum of medical conditions [1]. From
the coronary circulation responsible for delivering oxygenated
blood to the myocardium, to cerebrospinal fluid flow in the
ventricles of the brain, the physical processes that govern
these phenomena exhibit a complex interplay of nonlinear rhe-
ology, large deformations of biological tissues, and significant
multiscale interactions ranging from cellular to organ-level
structures. [2]

Although classical Navier-Stokes solvers proved valuable
in early biofluid applications, their limitations became evident
as researchers encountered the non-Newtonian and viscoelas-
tic properties of real biological fluids. For instance, whole
blood can exhibit shear-thinning viscosity (often modeled by
the Carreau-Yasuda or Cross law) and viscoelastic effects
under high-shear conditions near vessel stenoses or artifi-
cial heart valves [3]. Moreover, biological boundaries—the
inner walls of arteries, cardiac valves, alveolar sacs in the
lungs—are rarely rigid; their deformation can change flow
characteristics and lead to phenomena such as flow instabili-
ties, oscillatory shear, and localized recirculation zones. [4]

Over the last decade, considerable effort has been ex-
pended to develop numerical methods capable of capturing
these complexities while maintaining both computational fea-
sibility and numerical stability. Researchers have pursued four
principal directions: [5]

• High-Order Discretization Schemes. Spectral ele-
ment and high-order discontinuous Galerkin (DG) for-
mulations offer polynomial accuracy and minimal nu-
merical diffusion, making them particularly well-suited
for transitional and turbulent bioflows in complex vas-
cular networks.

• Immersed Boundary and Fictitious Domain Meth-
ods. These strategies circumvent the need for body-
fitted meshes around deforming or moving biologi-
cal structures, thereby facilitating simulations of heart
valve closure, vocal fold vibration, and ciliary-driven
flow in respiratory airways.

• Advanced Constitutive and Multiscale Modeling. En-
hanced rheological laws (e.g., Oldroyd-B with shear-
thinning modifications) and tensor-decomposition ap-
proaches address the high computational burden posed
by viscoelastic stress evolution at large Weissenberg
numbers. Concurrently, multiscale frameworks couple
molecular or cellular-scale physics (platelet aggrega-
tion, RBC membrane elasticity) to macroscopic flow
fields.

• Machine Learning and Data-Driven Acceleration.
Emerging physics-informed neural networks (PINNs),

reduced-order modeling (ROM), and hybrid data-driven
closures aim to reduce computational overhead by ap-
proximating subgrid-scale phenomena or by rapidly
predicting flow statistics in real-time clinical settings.

This review synthesizes the most salient developments in
these areas, paying special attention to the mathematical and
algorithmic underpinnings that enable robust, accurate, and
scalable biofluid simulations [6]. We focus on the theoretical
foundations underlying each method, the interplay of spatial
and temporal discretization strategies, and the challenges of
implementing these schemes in large-scale or clinical con-
texts where parameter uncertainties, boundary conditions, and
model validation come to the forefront [7]. We also empha-
size open challenges such as the need for more comprehensive
experimental benchmarks, robust coupling with tissue models,
and better integration of machine learning with first-principles
physics.

2. High-Order Discretization Schemes

One of the most prominent trends in contemporary biofluid
simulations is the adoption of high-order methods that achieve
increased accuracy per degree of freedom compared to low-
order finite volume or finite element methods [8]. Among
these, discontinuous Galerkin (DG) and spectral element meth-
ods (SEM) have received particular attention due to their fa-
vorable dispersive and dissipative properties. [9]

2.1 Discontinuous Galerkin Formulation
In the DG approach for the incompressible or low-Mach-
number Navier-Stokes equations, the computational domain
Ω is partitioned into a set of non-overlapping elements {Ωe}.
Within each element, one seeks a polynomial approximation
of degree p for velocity and pressure (or for velocity alone in
velocity–pressure mixed formulations). A typical strong-form
DG discretization for the momentum equation can be written
as: [10]

∫
Ωe

(
∂uh

∂ t
+∇ ·F(uh)

)
φh dx =

∮
∂Ωe

F̂·nφh ds ∀φh ∈V p
h (Ωe),

where F(uh) includes both convective and diffusive fluxes,
and F̂ represents the numerical flux at element boundaries.
The choice of flux function affects stability and accuracy;
common selections include Rusanov, Roe, and HLLC fluxes.
For biofluid flows at moderate Reynolds numbers, a local Lax-
Friedrichs or Rusanov flux is often preferred for its simplicity
and robust damping of oscillations. [11]

A key advantage of DG is its inherent locality: each el-
ement’s approximation can be evolved independently, with
inter-element coupling handled through fluxes on shared faces
[12]. This property lends itself well to parallelization on mod-
ern architectures. However, naive DG for incompressible
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flows can require sophisticated Lagrange multiplier formu-
lations or penalty terms to enforce the divergence-free con-
straint [13]. Hybridized DG (HDG) variants have been devel-
oped to reduce inter-element communication for large-scale,
high-order simulations. Notably, for geometries with com-
plex boundaries—such as branching coronary arteries—DG’s
element-wise approach accommodates unstructured meshes
with minimal overhead. [14]

2.2 Spectral Element Methods and Exponential Con-
vergence

Spectral element methods (SEM) can be seen as a high-order
finite element technique where polynomials are collocated at
Gauss–Lobatto–Legendre (GLL) or Gauss–Radau–Legendre
(GRL) quadrature points within each element [15, 16]. The
basis functions are typically Lagrange polynomials that inter-
polate these nodal points. SEM exhibits exponential conver-
gence for sufficiently smooth solutions, an attribute particu-
larly valuable in laminar or transitional flows such as those
found in certain respiratory or vascular contexts. [17]

A canonical SEM approach for arterial flows uses expan-
sions of velocity and pressure in tensor-product polynomial
bases on hexahedral elements: [18]

uh(ξ ,η ,ζ ) =
N

∑
i, j,k=0

ui jkℓi(ξ )ℓ j(η)ℓk(ζ ),

where ℓi(ξ ) are Lagrange polynomials. High geometric flexi-
bility is attained by mapping each element in the reference do-
main [−1,1]3 to a curved physical domain with isoparametric
transformations, capturing tortuous vessel shapes [19]. Time-
stepping schemes like semi-implicit backward differentiation
(BDF2) or Adams–Bashforth–Crank–Nicolson (AB-CN) are
then applied to handle the stiff inertial and viscous terms.

Studies comparing SEM to low-order finite volume meth-
ods in patient-specific aneurysm models have shown that high-
order expansions significantly reduce spurious oscillations
near the aneurysm dome, enabling more accurate capture
of vortex structures and shear-layer instabilities [20]. Such
improvements are critical for computing clinically relevant
metrics, such as wall shear stress and oscillatory shear index.
[21]

2.3 Stabilization and Large Eddy Simulation
Although many bioflows are laminar or transitional at small-
to-moderate Reynolds numbers (e.g., Re < 1000 in cerebral
arteries), some domains—like the larynx or large-diameter
vessels—may display turbulent flow features. Direct Numeri-
cal Simulation (DNS) at full resolution is infeasible for large
Reynolds numbers in anatomically realistic domains. As a
compromise, Implicit Large Eddy Simulation (ILES) with
high-order methods has emerged as a viable alternative [22].
Here, the intrinsic numerical dissipation of the upwinding
scheme in DG or the spectral filter in SEM acts analogously
to a subgrid-scale model [23]. This approach has been applied

successfully to the pulsatile flow in large catheters and cannu-
las, providing physically meaningful predictions of turbulent
structures at significantly lower cost than DNS.

In some cases, explicit subgrid-scale (SGS) models, such
as the dynamic Smagorinsky model, are embedded within
DG or SEM frameworks [24]. One approach is to compute
the elementwise solution gradient to identify regions of steep
velocity gradients or incipient turbulence. A Smagorinsky-
type viscosity term can then be added locally [25]. Entropy-
stable or positivity-preserving flux modifications ensure the
stability of these high-order simulations, even in the face of
steep velocity and shear gradients. [26]

Overall, high-order discretization has become a linchpin
of advanced biofluid simulation, enabling refined resolution
of complex boundary layers, transitional flow phenomena,
and subtle rheological variations—capabilities vital for cap-
turing the physiologically relevant details of cardiovascular
and respiratory flows.

3. Immersed Boundary and Fictitious
Domain Methods

Biological tissues and organs often exhibit intricate, time-
evolving boundaries that are prohibitively expensive to mesh
or remesh if one relies on body-fitted approaches [27]. Im-
mersed boundary (IB) and fictitious domain methods have
therefore gained prominence, allowing one to treat irregular
or moving structures embedded within a fixed (or adaptively
refined) Eulerian grid.

3.1 Classical Immersed Boundary Formulation
The seminal IB method introduced by Peskin was designed
originally for cardiac simulations, embedding flexible heart
valve leaflets in a uniform Cartesian mesh [28]. The fluid
momentum equation is: [29]

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+ f,

where f(x, t) is a forcing term encoding structural elasticity.
If X(s, t) denotes the position of a material point labeled by s
on the immersed boundary, and F(s, t) is the force density on
this material point, then f(x, t) is obtained by spreading F(s, t)
using a discrete Dirac delta function:

f(x, t) =
∫

Γ

F(s, t)δ
(
x−X(s, t)

)
ds.

In turn, the immersed boundary moves with the local fluid
velocity:

∂X
∂ t

(s, t) =
∫

Ω

u(x, t)δ
(
x−X(s, t)

)
dx.

This approach obviates the need to mesh the moving structure,
instead using interpolation and spreading operations to couple
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fluid and solid states [30]. Modern IB variants incorporate
advanced regularization kernels and spectral deferred correc-
tion to improve the accuracy of delta-function approxima-
tions, reducing spurious fluxes across the immersed boundary.
[31, 32]

3.2 Fictitious Domain and Distributed Lagrange Mul-
tipliers

The fictitious domain (FD) method broadens the IB principle
by embedding a solid (possibly rigid or deformable) into a
larger “fictitious” domain, then enforcing constraints (e.g.,
no-slip) via Lagrange multipliers. A typical FD-LM system
for a rigid object moving in a viscous fluid can be formulated
as: [33]

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+λ ,

u = Vs in the solid domain,

where λ is a distribution of Lagrange multipliers that enforces
u−Vs = 0 in the solid region. For a moving solid with ve-
locity Vs(x, t), one can solve for the multipliers in a coupled
manner. Recent improvements incorporate robust block pre-
conditioners and multilevel solvers, making FD-LM methods
scalable to large 3D problems, such as simulating multiple in-
teracting prosthetic heart valves or stent deployment in arterial
flows.

3.3 Extensions for Nonlinear Structures and Con-
tact

More advanced immersed approaches account for the complex
rheology of biological tissues [34]. For example, leaflets in
heart valves or cartilage surfaces in articulating joints can
exhibit hyperelastic or poroviscoelastic behavior [35]. The
resulting PDE system might introduce nonlinear solid stress
terms of the form:

F(s, t) =− δ

δX(s, t)

∫
Γs

W (E(X))dS−κ∇s(∇s ·X),

where W (E) is a strain energy functional, E is the Green–Lagrange
strain tensor, and the second term might impose inextensibil-
ity or thickness constraints. Immersed finite element (IFE)
methods have also gained attention, meshing the structure in
its own Lagrangian coordinates and embedding it in an Eu-
lerian fluid mesh, thus bridging classical finite element solid
modeling with the IB concept. [36]

In cases of contact or near-contact (e.g., valve leaflets clos-
ing or RBCs colliding), robust numerical treatment becomes
crucial [37]. Penalty-based approaches or constraint-based
collision handling can be introduced into IB or FD frame-
works, though these significantly complicate the underlying
linear algebra and time-stepping strategies.

3.4 Applications and Performance
Applications range from simulating the fluid-structure inter-
play in heart valves (mitral, aortic, or tricuspid) to cilia-driven
flows in respiratory epithelial surfaces [38]. Benchmark stud-
ies indicate that for large amplitude deformations, the IB
approach offers an order-of-magnitude improvement in CPU
time relative to repeated mesh regeneration required by body-
fitted methods. Nevertheless, one must still address potential
artifacts such as smearing of the boundary interface, loss of
volume conservation, and inaccurate shear stress near im-
mersed boundaries—especially for flow regimes with high
Reynolds numbers or strong pressure gradients. [39]

Overall, immersed boundary and fictitious domain meth-
ods have demonstrated substantial versatility in addressing
the dynamic, deformable boundaries that characterize many
biofluid problems, often achieving a harmonious balance be-
tween geometric flexibility and numerical tractability. [40]

4. Constitutive Modeling and Tensor
Decompositions

Accurate predictive simulations of biofluid flows hinge on
realistic constitutive models that capture the fluid’s rheologi-
cal response under the range of shear and strain rates found
in vivo. Blood, synovial fluid, and pulmonary mucus, for
example, can exhibit non-Newtonian, thixotropic, and/or vis-
coelastic properties. [41]

4.1 Generalized Newtonian Models
A commonly used approach for blood at moderate shear rates
is a generalized Newtonian model:

τ = 2µ(γ̇)D, D =
1
2
(∇u+∇uT ),

where γ̇ =
√

2D : D is the scalar shear rate, and µ(γ̇) might
follow Carreau–Yasuda:

µ(γ̇) = µ∞ +(µ0 −µ∞)
[
1+(λ γ̇)2] n−1

2

or Casson-type yield stress models [42]. These laws capture
shear-thinning but ignore elastic effects and time-dependent
structural rearrangements of RBC aggregates. Yet for many
large-vessel hemodynamics applications (Re ≈ 200−1000),
such a generalized Newtonian approach provides an accept-
able first approximation. [43] [44].

4.2 Viscoelastic Models and the High Weissenberg
Number Problem

More sophisticated modeling is required when elasticity plays
a prominent role, such as in microcirculation or near large
shear gradients [45, 46]. Oldroyd-B, Giesekus, FENE-P, and
Phan–Thien–Tanner (PTT) fluids are frequently used in blood
flow research. A typical Oldroyd-B equation for the polymeric
stress τ p reads:
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τ p +λ
▽
τ p = 2ηp D,

where
▽
τ p is the upper-convected derivative:

▽
τ p =

∂τ p

∂ t
+(u ·∇)τ p − (∇u)T · τ p − τ p · (∇u).

In the presence of large relaxation times λ and high flow
speeds, the Weissenberg number Wi = λ γ̇ can become large,
leading to numerical instabilities such as artificial stress growth
or unphysical negative eigenvalues in τ p. This issue is com-
monly known as the “High Weissenberg Number Problem”
(HWNP). [47]

4.3 Log-Conformation and Stabilized Approaches
Log-conformation transformations address the HWNP by
rewriting the conformation tensor c = I+ 1

ηp
τ p in terms of a

matrix logarithm: = logc. The evolution equation in space
enforces positivity of c by construction, mitigating blow-up
in standard Oldroyd-B formulations. For instance,

D
Dt

= G( ,u)+S( ),

where G and S are carefully designed to preserve symmetry
and positive definiteness. Numerical experiments show that
log-conformation methods can stably simulate Wi > 100 in
certain benchmark flows, far exceeding the typical Wi < 1−
10 limits of classical formulations.

4.4 Tensor Decomposition and Reduced Represen-
tations

For 3D viscoelastic simulations in large domains, storing and
evolving the conformation or stress tensor at every degree of
freedom poses a heavy memory and computational burden
[48]. Tensor decomposition strategies, such as the canonical
polyadic decomposition (CPD) or hierarchical Tucker (HT)
decomposition, approximate τ p(x, t) or c(x, t) with a low-rank
expansion:

c(x, t)≈
R

∑
α=1

ψ
1
α(x)⊗ψ

2
α(y)⊗ψ

3
α(z)⊗φα(t).

This representation allows large-scale simulations with far
fewer parameters, provided the stress/conformation tensors
are not pathologically “full rank.” Such methods have demon-
strated up to 70% reductions in memory usage and speedups
of similar magnitude in HPC contexts, enabling more refined
or extended spatiotemporal simulations of clot formation or
viscoelastic lubrication in joints [49].

4.5 Coupling with Wall Models and Hemodynamics
Indices

Practitioners often require not only velocity and stress fields
but also clinically relevant indices such as wall shear stress
(WSS), oscillatory shear index (OSI), or relative residence
time (RRT) [50]. In non-Newtonian flows, these indices can
vary significantly depending on the chosen rheological law
and local shear rates [51]. Incorporating advanced viscoelastic
models can change computed WSS distributions by 20–50%
in regions of recirculation, with direct implications for assess-
ing atherosclerotic plaque progression or thrombus risk.

Hence, a thorough approach to biofluid modeling demands
robust constitutive equations that capture essential rheologi-
cal behaviors without overwhelming computational resources
[52]. Tensor decomposition, log-conformation transforma-
tions, and stabilized numerical formulations each represent
crucial developments enabling accurate, high-fidelity simu-
lations of viscoelastic biofluids in anatomically realistic do-
mains.

5. Multiscale and Machine Learning
Accelerators

Biological systems often span disparate length and time scales,
from cellular (micrometers, microseconds) to organ-level (cen-
timeters to meters, seconds to hours) [53]. Capturing such
multiscale interactions can be paramount, for instance, when
modeling platelet aggregation (micro-scale) that leads to clot
formation altering large-artery flow fields (macro-scale). [54]

5.1 Heterogeneous Multiscale Methods (HMM)
HMM-type schemes couple macroscopic PDEs (e.g., incom-
pressible Navier-Stokes) with on-the-fly microscopic solvers
(e.g., dissipative particle dynamics or direct RBC-based mod-
eling) in small subdomains:

umicro(y, t) = umacro(x0, t)+∇umacro|x0(y−x0),

where x0 is a macroscopic “representative point,” and y spans
the microscopic domain. The micro-scale simulation provides
closure information, such as effective viscosity or particu-
late stress, which is then fed back into the macro-scale PDEs
[55]. This approach is beneficial for microcirculation in cap-
illary beds or for RBC-laden flows with local shear-thinning
characteristics. However, computational cost can balloon if
many macroscale cells require embedded microscale solvers
[56]. Adaptive sampling strategies and surrogate modeling
can alleviate these costs by updating micro-scale simulations
only when local conditions deviate substantially from known
reference states. [57]

5.2 Reduced-Order Models and Surrogate-Based
Modeling

To further mitigate cost, reduced-order models (ROMs) em-
ploy projection-based techniques (proper orthogonal decom-
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position, dynamic mode decomposition) or low-rank expan-
sions to represent flow solutions in a much smaller subspace.
For example, in a large vessel simulation, the velocity field
might be well-approximated by a combination of 10–50 modes
derived from a reference simulation or set of training snap-
shots: [58]

u(x, t)≈
M

∑
m=1

am(t)Φm(x).

During online predictions, only the coefficients am(t) are
evolved via a reduced system of ODEs. Such ROMs, while
extremely fast, can suffer from poor robustness if the real-
time operating conditions differ significantly from those in
the training data (e.g., higher Reynolds numbers or changed
boundary conditions) [59]. Hybrid approaches combine ROM
with local recourse to a full solver in critical regions or time
intervals.

5.3 Machine Learning for Subgrid-Scale Closure
Deep neural networks have recently emerged as universal
function approximators for capturing complex closure rela-
tionships that are difficult to encode analytically [60, 61]. One
approach is to treat subgrid stresses or non-Newtonian clo-
sures as unknown functions: [62]

τSGS = Nθ (∇u, p,Re,Wi),

where Nθ is a neural network with parameters θ . This net-
work is trained on high-fidelity simulation data or experi-
mental velocity fields. Alternatively, physics-informed neural
networks (PINNs) incorporate PDE residuals into their loss
function, allowing the network to learn flow solutions in a
continuous domain: [63]

L (θ) =
Ndata

∑
i=1

∣∣∣uθ (xi)−uref
i

∣∣∣2 +β

∫
Ω

∥∥∥∇ ·uθ

∥∥∥2
dx.

PINNs have demonstrated promise in reconstructing flow
fields from sparse clinical measurements, such as Doppler
ultrasound or MRI velocity profiles [64]. When integrated
into a PDE solver, these networks can replace or augment clas-
sical closure terms, accelerating computations without losing
significant accuracy. GPU-based parallelization often enables
near-real-time inference, making these methods attractive for
interactive or patient-specific simulations. [65]

5.4 Applications to Hemodynamics and Respiratory
Flows

Machine learning accelerators have been explored for multi-
parameter sensitivity analyses of arterial flow, where the uncer-
tain parameters might be vessel stiffness, inflow waveforms,
or viscosity. By training neural surrogates on a small ensem-
ble of full solutions, clinicians can rapidly evaluate the impact

of varied hemodynamic scenarios (e.g., altered heart rate or
vessel diameter) [66]. Similar frameworks apply to respira-
tory flows, where alveolar expansions vary among individuals
and can dramatically affect ventilation efficiency [67]. PINN-
based solvers or other surrogates can approximate 3D alveolar
flow patterns in near real time, an avenue of research that may
eventually guide mechanical ventilation settings in intensive
care.

Nonetheless, there remain open questions about reliability
and generalizability across a wide range of physiological con-
ditions [68]. Ensuring consistent, physically realistic extrapo-
lation outside the training domain is nontrivial. Researchers
also explore hybrid frameworks, in which a classical PDE
solver runs with local mesh adaptation, and machine learn-
ing surrogates fill in the “gaps” (e.g., sub-resolution RBC-
laden flows or partial boundary conditions) [69]. Future work
will likely focus on robust error bounds, interpretability, and
HPC–machine learning code integration for exascale comput-
ing resources. [70, 71]

6. Conclusion
Over the past decade, numerical simulations of biofluid flows
have undergone remarkable transformations, driven by ad-
vances in computational methodologies, numerical stability
enhancements, and more sophisticated modeling of complex
biophysical interactions. This review has highlighted key
themes that define the current state of the field, underscor-
ing the interplay between mathematical innovation, high-
performance computing, and emerging data-driven approaches
[72]. The discussion has outlined several crucial develop-
ments, ranging from high-order numerical methods to ad-
vanced boundary treatments, enhanced rheological models,
multiscale frameworks, and machine learning accelerators
[73]. While these innovations have significantly expanded
the scope and accuracy of biofluid simulations, fundamen-
tal challenges remain, particularly in validation, multiphase
interactions, and full-organ-scale modeling. This synthesis
provides a deeper contextualization of these themes, situating
them within the broader landscape of computational biofluid
dynamics and identifying future research directions that may
further propel the field forward [74].

A major advance in the numerical simulation of biofluids
has been the adoption of high-order methods that enhance
both accuracy and stability in capturing intricate flow struc-
tures. Discontinuous Galerkin (DG) and spectral element
methods have proven particularly effective in resolving the
fine-scale details of pulsatile and transitional flows characteris-
tic of cardiovascular and respiratory systems [75]. The appeal
of these methods lies in their spectral-like convergence proper-
ties, which allow for superior accuracy per degree of freedom
compared to traditional finite-volume or finite-difference ap-
proaches [76]. However, their implementation comes with
inherent challenges, particularly regarding numerical stabil-
ity in high Reynolds number regimes. Recent developments
in entropy-stable flux formulations and implicit large-eddy
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simulation (ILES) techniques have mitigated many of these
difficulties, allowing for stable high-fidelity computations at
Reynolds numbers that were previously considered intractable
[77]. These improvements have been instrumental in simulat-
ing turbulent blood flow in stenotic arteries, complex vascular
bifurcations, and airway turbulence, providing new insights
into pathological hemodynamics [78]. Despite these advances,
further research is needed to balance computational cost and
stability, especially for patient-specific simulations where
high-order accuracy must be maintained over long physio-
logical timescales.

Another crucial development in biofluid simulation is the
improved handling of deformable and moving boundaries,
which are essential for modeling dynamic biological struc-
tures such as heart valves, cilia, and cellular membranes [79].
Traditional mesh-based approaches struggle to accommodate
large deformations without incurring excessive computational
costs due to frequent mesh regeneration. Immersed boundary
(IB) and fictitious domain methods have addressed this issue
by allowing solid-fluid interactions to be modeled within a
fixed computational grid, thereby circumventing the need
for explicit remeshing [80]. These techniques have been
particularly successful in simulating heart valve dynamics,
where leaflet motion and fluid-structure interactions play a
critical role in valve function and disease progression [81].
Additionally, penalty-based stabilization techniques and dis-
tributed Lagrange multipliers have enhanced the accuracy of
IB methods, reducing spurious force artifacts that can arise at
fluid-solid interfaces. This has been particularly relevant for
applications requiring precise shear stress computations, such
as studies on thrombosis initiation and atherosclerotic plaque
formation [82, 83]. While these methods offer significant
computational efficiency, ongoing research is required to im-
prove their robustness in handling extreme deformations, thin
flexible structures, and multi-scale interactions that emerge in
biological flow systems.

In parallel with numerical advancements, the modeling of
biofluid rheology has seen substantial progress, particularly
in the simulation of non-Newtonian and viscoelastic effects
[84]. Biological fluids, such as blood, synovial fluid, and
mucus, exhibit complex rheological behaviors that cannot be
accurately captured by Newtonian models [85]. Recent ap-
proaches leveraging log-conformation tensor methods have
overcome numerical instabilities associated with high Weis-
senberg number flows, enabling more stable and accurate
simulations of viscoelastic biofluids. This has been particu-
larly impactful in modeling clot formation, where the interplay
between shear-thinning behavior and fibrin network develop-
ment necessitates a high-fidelity description of the underlying
rheological properties [86]. Low-rank tensor decompositions
have further extended the feasibility of large-scale 3D simula-
tions by significantly reducing memory requirements, allow-
ing for computationally feasible simulations of biofluids in
clinically relevant geometries [87]. Nonetheless, challenges
persist in coupling these complex rheological models with

fluid-structure interaction frameworks and in parameterizing
them based on experimental data. The extreme variability of
biological materials, coupled with limited in vivo measure-
ments, complicates the development of universally applicable
rheological models [88]. Addressing these issues will require
more extensive experimental validation and the integration of
data-driven approaches that can infer model parameters from
physiological measurements.

Beyond improvements in numerical and rheological mod-
eling, the incorporation of multiscale and data-driven tech-
niques has opened new avenues for bridging cellular and
macroscopic flow scales [89]. Heterogeneous multiscale meth-
ods (HMMs) have facilitated localized fine-scale resolution
within global continuum models, enabling detailed model-
ing of cellular and particulate dynamics without incurring
prohibitive computational costs [90]. This has been particu-
larly useful in simulating red blood cell aggregation, platelet
adhesion, and microvascular transport, where fine-scale in-
teractions significantly influence macroscopic flow behav-
ior. Machine learning techniques have further augmented
these multiscale approaches by providing surrogate models
and reduced-order closures for computationally expensive mi-
croscale processes [91]. Physics-informed neural networks
(PINNs) have emerged as a particularly promising tool for
solving inverse problems, reconstructing unknown bound-
ary conditions, and accelerating repeated or real-time sim-
ulations [92]. Despite these successes, challenges remain
in ensuring the generalizability and interpretability of these
data-driven models, particularly when extrapolating beyond
their training datasets. The black-box nature of many machine
learning approaches raises concerns about their reliability in
critical biomedical applications, necessitating rigorous cross-
validation and uncertainty quantification [93, 94]. Future
research should focus on hybrid approaches that integrate ma-
chine learning with physically consistent modeling constraints
to enhance robustness and reliability.

Despite these transformative developments, significant
gaps persist in the field, particularly in experimental valida-
tion and the simulation of complex multiphase flows [95]. The
scarcity of high-fidelity experimental benchmarks in realistic
physiological conditions continues to pose a major obstacle
to the validation of computational models [96]. While in
vitro experiments provide valuable insights, they often fail to
replicate the dynamic, three-dimensional, and heterogeneous
nature of in vivo environments. Additionally, the extreme
biological variability in tissue properties, fluid composition,
and physiological responses complicates the development of
universally applicable models [97]. Addressing this challenge
requires a concerted effort to develop standardized datasets,
advanced imaging techniques, and in situ validation method-
ologies that can provide more comprehensive benchmarks for
computational models.

Another major challenge is the simulation of multiphase
and multi-component flows, which are ubiquitous in biolog-
ical systems but remain only partially addressed in current
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numerical frameworks [98]. Examples include air-mucus in-
teractions in pulmonary flows, red blood cell and platelet
coupling in hemodynamics, and lipid-protein emulsions in
digestive processes [99]. Accurately capturing these interac-
tions requires advanced interface tracking methods, adaptive
meshing strategies, and efficient coupling of disparate phys-
ical models. While recent advances in phase-field methods
and volume-of-fluid techniques have improved multiphase
modeling, challenges remain in achieving accurate interfacial
dynamics, resolving nano-scale interactions, and maintaining
computational tractability at organ-level scales [100]. The
complexity of these flows demands further integration of high-
performance computing, exascale simulations, and advanced
numerical techniques capable of handling extreme disparity
in spatial and temporal scales [101].

Lastly, the ultimate frontier in biofluid simulations lies in
the integration of fluid dynamics with structural mechanics,
electrophysiology, and biochemical signaling to create holistic
models of organ function. While fluid-structure interaction
(FSI) models have successfully captured aspects of cardiac
and vascular biomechanics, their coupling with electrophysio-
logical and biochemical transport models remains relatively
underdeveloped [102]. The interplay between hemodynam-
ics, myocardial electrophysiology, and metabolic processes
is crucial for understanding pathophysiological conditions
such as arrhythmias, heart failure, and stroke. Similarly, in
pulmonary systems, the interaction between airway fluid dy-
namics, epithelial transport, and immune responses plays a
critical role in diseases such as cystic fibrosis and chronic
obstructive pulmonary disease (COPD) [103]. Addressing
these challenges will require the development of multi-physics
solvers, adaptive coupling strategies, and efficient computa-
tional frameworks that can handle the immense complexity
of fully coupled biological systems [104]. Numerical simu-
lations of biofluid flows have made extraordinary progress
in recent years, with advancements in high-order numerical
methods, improved boundary treatments, sophisticated rhe-
ological models, and multiscale frameworks expanding the
frontiers of biomedical fluid dynamics. Machine learning
and data-driven techniques are further accelerating progress,
offering new ways to overcome computational bottlenecks
and handle uncertain physiological conditions [105]. How-
ever, critical challenges remain, particularly in experimental
validation, multiphase modeling, and whole-organ simula-
tions. The next decade will likely witness further integration
of these computational techniques with high-performance
computing, multi-physics modeling, and real-time clinical
applications, ultimately driving more accurate, predictive, and
patient-specific biofluid simulations. [106]
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