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Abstract
Electrical drive systems form the interface between electrical energy conversion and mechanical actuation
across industrial, vehicular, and renewable applications. Their design spans electromagnetic, power electronic,
mechanical, and computational domains, where modeling assumptions, controller structure, and implementation
choices interact in nontrivial ways. This study presents an analytical discussion of the principal phases involved
in engineering such drives, emphasizing modeling fidelity, control synthesis, and performance optimization under
practical constraints. The narrative highlights how field-oriented formulations, switching-aware power-stage
representations, and thermally consistent loss models provide a coherent baseline for subsequent control and
estimation design. Particular attention is given to the translation from continuous-time physics to sampled,
quantized, and resource-constrained digital execution, acknowledging that small discrepancies introduced
by modulation, dead time, sensor noise, and finite word length accumulate into measurable ripple, transient
deviation, and lifetime stress. The exposition outlines a set of cross-compatible performance metrics that align
with energy efficiency, torque quality, robustness to parameter drift, and thermal headroom. Multiobjective
optimization is discussed as a unifying approach for navigating the trade space between efficiency, dynamic
response, electromagnetic interference, and reliability. The presentation strives for methodological neutrality,
focusing on the structure of models, the interplay of assumptions, and the conditions under which particular
choices are effective. The resulting synthesis aims to assist practitioners in aligning modeling depth and
computational effort with the required performance envelope and lifecycle targets without overstating novelty or
prescribing a singular design pathway.
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1. Introduction
Electrical drives represent one of the most sophisticated in-
tegrations of electromechanical and electronic subsystems
in modern engineering [1]. At their core, they combine an
electric machine, a power electronic converter, a real-time con-
troller, and an array of embedded sensors to deliver controlled
mechanical power. The purpose of such integration is not
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merely to rotate a shaft but to produce torque and speed with
high precision, efficiency, and robustness under varying load
and environmental conditions. The entire discipline of drive
engineering bridges fundamental physics with control the-
ory and digital implementation, forming a multidisciplinary
synthesis that embodies both modeling depth and practical
pragmatism.

The design process of an electrical drive begins with the
creation of physical models that capture the essential elec-
tromagnetic and mechanical interactions within the machine.
These models must strike a delicate balance: they need to
be detailed enough to reflect dominant loss mechanisms and
dynamic behavior, yet simple enough to allow analysis, con-
troller design, and parameter identification [2]. Electromag-
netic models, derived from Maxwell’s equations, are reduced
to lumped-parameter representations where flux linkages, in-
ductances, and back electromotive forces (EMFs) can be ex-
pressed in manageable mathematical form. Mechanical mod-
els, on the other hand, express torque balance, inertia, and
frictional effects that connect electrical inputs to mechanical
outputs. These coupled equations establish the playground
where design choices—such as winding topology, pole con-
figuration, and material selection—affect overall drive perfor-
mance.

Once the underlying model is defined, attention shifts
to the control architecture. The control objective typically
centers on enforcing torque and flux behavior that meets the
user’s speed or position demands while maintaining system
constraints. The controller must therefore translate reference
quantities into voltage or current commands that are physi-
cally realizable by the power electronic converter [3]. The
converter itself, usually a voltage-source inverter employing
pulse-width modulation (PWM), provides the interface be-
tween the low-level switching dynamics of semiconductor de-
vices and the continuous dynamics of the machine windings.
The sampling, modulation, and switching processes introduce
discrete-time and nonlinear effects that must be reconciled
with the continuous-time model assumptions. Achieving a
consistent interface between these domains is one of the major
challenges of drive design.

Implementation is where theory meets reality. The ideal-
ized models that guided design must be adjusted to accom-
modate parasitic inductances, sensor noise, quantization, and
thermal limits. Each component—semiconductors, magnetic
materials, bearings—exhibits performance degradation under
stress and temperature, and these effects accumulate across
time scales [4]. A successful design integrates real-time mon-
itoring and protection logic to ensure that the system remains
within safe operating limits. Numerical precision in the digital
controller, the choice of sampling frequency, and the resolu-
tion of analog-to-digital converters all influence how closely
the implemented system mirrors its theoretical model. Drive
engineers must thus navigate the complex trade-offs among
switching frequency, thermal load, electromagnetic interfer-
ence, and computational burden.

The engineering of electrical drives inherently spans mul-
tiple temporal and spatial scales. At the micrometer level, the
physical layout of conductors determines copper and prox-
imity losses, influencing efficiency and heat generation [5].
At the millisecond level, switching and modulation patterns
determine the instantaneous current ripple, shaping torque
smoothness and acoustic noise. At the second-to-hour level,
thermal dynamics define the permissible operating envelope,
determining how much continuous torque or overload can be
sustained. These multi-scale interactions emphasize that no
single domain dominates the behavior of the system; rather,
its performance emerges from the coherent coordination of
electrical, magnetic, mechanical, and thermal phenomena.

A critical insight in drive theory is that the predictive qual-
ity of a model is not dictated by the sheer number of equations
or parameters but by the structural consistency and relevance
of those parameters. A well-posed model captures the essen-
tial causal relations without unnecessary detail. Parameter
identifiability ensures that each modeled quantity can be es-
timated from measurable data, while disturbance alignment
ensures that the model’s uncertainties reflect the dominant
sources of variability encountered during real operation [6].
These aspects determine whether a model serves as a reliable
basis for control design and performance prediction or merely
as a theoretical construct disconnected from practice.

Within this modeling and control hierarchy, the transfor-
mation from three-phase stator variables to rotating reference
frames is a cornerstone concept. Electrical machines gener-
ate and respond to three-phase currents and voltages, which
are inherently coupled through the magnetic field. By trans-
forming these quantities into a reference frame that rotates
synchronously with the rotor or stator flux, the equations
of motion simplify dramatically. In such frames, the com-
plex coupling between phases reduces to nearly decoupled
scalar equations, allowing the independent control of torque-
producing and flux-producing current components. This sim-
plification forms the foundation for field-oriented control
(FOC) and direct torque control (DTC) strategies, both of
which are standard in modern high-performance drives. [7]

However, this mathematical convenience has limitations.
The assumptions underpinning reference frame decoupling
break down when the machine exhibits strong magnetic saliency,
saturation, or spatial harmonics. In these cases, cross-coupling
re-emerges, and the controller must explicitly account for or
robustly compensate these effects. Similarly, inverter nonlin-
earities such as dead-time, voltage drops, and finite switch-
ing delays distort the intended voltage vectors, introducing
discrepancies between commanded and actual flux trajecto-
ries. Advanced control strategies must therefore incorporate
feedforward compensation, adaptive estimation, or robust syn-
thesis to maintain performance despite these imperfections.
[8]

Proportional-integral (PI) controllers, implemented in ei-
ther stationary or rotating reference frames, remain the base-
line for current regulation due to their simplicity and proven
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Component Function Domain Key Parameter
Electric Machine Converts electrical to

mechanical energy
Electromagnetic Torque Constant

Power Converter Regulates volt-
age/current to
machine

Electronic Switching Frequency

Controller Executes control laws Digital/Control Sampling Period
Sensors Measure physical

quantities
Mechatronic Resolution

Table 1. Subsystem overview of an electrical drive.

Control Method Type Dynamic Response Robustness Implementation Effort
PI Control Linear Moderate Moderate Low
Field-Oriented Nonlinear Fast Good Medium
Predictive Model-Based Very Fast Fair High
Sliding Mode Nonlinear Fast Very High High

Table 2. Comparison of control strategies in electrical drives.

Parameter Symbol Unit Nominal Value Range Effect
Stator Resistance Rs Ω 0.8 0.7–0.9 Affects copper losses
Inductance (d-axis) Ld mH 5.2 5–5.5 Influences flux control
Inductance (q-axis) Lq mH 4.8 4.5–5.0 Influences torque ripple
Moment of Inertia J kg·m2 0.012 0.01–0.015 Impacts speed dynamics

Table 3. Representative machine parameters for simulation and analysis.

reliability. They provide satisfactory performance in many in-
dustrial applications where system parameters are well known
and operating conditions are stable. Yet, as the demands on
efficiency, dynamics, and robustness increase, more sophis-
ticated control paradigms emerge. Optimal control methods,
such as model predictive control (MPC), exploit explicit plant
models to minimize a cost function reflecting current errors,
switching losses, or torque ripple under hard constraints. Ro-
bust control techniques, including H∞ or sliding-mode designs,
address parameter uncertainties and external disturbances.
Each approach extends the ability of the drive to maintain
stable, high-quality operation under complex, time-varying
conditions. [9]

The optimization layer within modern drive systems serves
as the bridge between control objectives and broader system-
level goals. It connects instantaneous control decisions to
long-term metrics such as energy efficiency, thermal utiliza-
tion, and component lifetime. Loss models quantify how
conduction and switching losses vary with current amplitude
and frequency, while thermal models translate these losses
into temperature rise within critical components. By integrat-
ing these models into control algorithms, drives can adapt
their operation to minimize energy consumption or prevent
overheating. This approach blurs the traditional boundary
between control and design, allowing real-time optimization
that accounts for both performance and reliability.

In practice, achieving such coordination requires precise
sensing and estimation [10]. Rotor position sensors, current
sensors, and temperature probes provide real-time feedback,
but they also introduce their own noise and delays. Sensorless
control techniques, which infer rotor position from voltage
and current measurements, reduce hardware cost and increase
robustness in harsh environments but depend critically on ac-
curate machine models. Observer-based estimation methods,
such as extended Kalman filters or sliding-mode observers,
enable this functionality while compensating for model uncer-
tainty and measurement noise. Thus, sensing, estimation, and
control become intertwined elements of a unified feedback
architecture.

The evolution of electrical drives continues to be propelled
by advancements in semiconductor technology, computational
power, and materials science. Wide-bandgap devices such
as silicon carbide (SiC) and gallium nitride (GaN) enable
higher switching frequencies and lower losses, opening new
possibilities for compact and efficient converters [11]. Mean-
while, embedded processors and field-programmable gate
arrays (FPGAs) allow the implementation of complex control
algorithms with microsecond-level latency. On the machine
side, new magnetic materials and cooling techniques push
the boundaries of torque density and thermal resilience. As
these innovations mature, the line between power electron-
ics, control software, and electromechanical design grows
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increasingly blurred.
The following sections proceed from physical modeling

through converter representation, control architectures with
stability analysis, state estimation and sensing, performance
optimization with multiobjective trade-offs, thermal and re-
liability perspectives, and implementation details that influ-
ence realized behavior. The development maintains a neutral
stance on technique selection, instead describing conditions
and mechanisms that govern effectiveness. [12]

2. Physical Modeling of Electrical Drives
At the electrical core, an induction machine or permanent-
magnet synchronous machine can be captured through space-
vector or phase-domain formulations. In a generic three-phase
stator representation with phase set {a,b,c}, the stator equa-
tions are written as

vabc
s = Rsiabc

s +
d
dt

λ
abc
s ,

λ
abc
s = Labc

ss iabc
s +Labc

sr (θ)iabc
r .

For a cage rotor, iabc
r arises from rotor bar currents whose

dynamics are governed by induced voltages and resistances
tied to slip. In permanent-magnet synchronous machines, the
rotor current states collapse to flux contributions from mag-
nets with saliency captured by distinct direct and quadrature
inductances. The Park transformation maps stator variables
to a synchronous rotating frame at electrical angle θe with
angular speed ωe, yielding[

vd
vq

]
= Rs

[
id
iq

]
+

d
dt

[
λd
λq

]
−ωe

[
0 −λd
λq 0

][
1
1

]
,

λd = Ld id +λm, λq = Lqiq.

The electromagnetic torque for an interior permanent-magnet
machine follows

Te =
3
2

p(λmiq +(Ld −Lq)id iq) ,

with p the number of pole pairs and λm the magnet flux linkage
[13]. The mechanical subsystem obeys

Jω̇m +Bωm + τ f (ωm) = Te −TL,

where J is inertia, B viscous coefficient, τ f captures Coulomb
and Stribeck friction, and TL is load torque. When spatial har-
monics and slotting are non-negligible, the inductance matrix
develops position dependence beyond Ld and Lq. A compact
augmentation introduces harmonic torque components

Th(θe, id , iq) = ∑
k∈K

αkiq cos(kθe)+βkid sin(kθe),

representing saliency-induced ripple that appears in both torque
and back-EMF.

Saturation and cross-saturation introduce state-dependent
inductances [14]. A conservative representation treats Ld(id , iq)

and Lq(id , iq) as smooth functions with bounded gradients,
enabling incremental linearization for control design. The
resulting state model

ẋ = f(x,u,θ), x = [id , iq,ωm,θm]
⊤, u = [vd ,vq]

⊤

admits Jacobians A(x) = ∂ f/∂x and B(x) = ∂ f/∂u for local
analysis. For induction machines, stator and rotor flux vectors
ψs and ψr yield

ψ̇s =−Rsis + vs,

ψ̇r =−Rr

Lr
ψr +

LmRr

Lr
is − j(ωe −ωr)ψr,

with electromagnetic torque Te =
3
2 p Im{ψsi∗s}. The differ-

ence ωe −ωr encodes slip; field orientation aligns either ψr
or ψs to decouple flux and torque channels in steady-state.

Mechanical coupling to loads introduces compliance and
backlash [15]. A two-inertia model captures torsional dynam-
ics,

Jmω̇m = Te −Ks(θm −θl)−Ds(ωm −ωl)−Tf m(ωm),

Jlω̇l = Ks(θm −θl)+Ds(ωm −ωl)−Tf l(ωl)−TL,

with shaft stiffness Ks and damping Ds. The presence of
compliance shifts resonances into the control bandwidth, con-
straining permissible loop gains and modulation indices.

3. Circuit-Element Representations and
Structure–Electromagnetic

Correspondence
Circuit-element representations of electrical machines provide
a compact language that ties the geometry and materials of
a motor to its electromagnetic behavior through networks of
resistive, inductive, capacitive, and controlled sources. The
appeal of this viewpoint lies in its ability to encode field in-
teractions in a form that is directly compatible with power
electronic converters and control algorithms while retaining a
transparent mapping back to physical structures such as slots,
teeth, air gaps, magnets, and end windings. Over decades, this
family of representations has evolved from classical per-phase
equivalent circuits toward multiport, position-dependent, and
frequency-aware networks whose parameters are functions
of temperature, saturation, and rotor angle [16]. Within this
spectrum, recent reports by Tsintsadze et al. (2023) among
others, have emphasized how carefully constructed circuit
elements can preserve the linkage between manufactured fea-
tures and observed electrical characteristics without imposing
undue computational overhead in system-level simulations
[17]. The following discussion surveys the modeling choices,
parameter mappings, and analytical constructs that enable
these networks to remain faithful to machine physics while
remaining tractable for design, control, and diagnostics.

At the core of a circuit-element view is the inductance
matrix. For a machine with ns stator coils and nr rotor circuits
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(which may be physical windings, cage bars aggregated into
loops, or virtual magnetization loops), the flux linkages obey

λ (θ) = L(θ , i) i+λ m(θ),

where i ∈ Rns+nr collects currents, L is the differential in-
ductance matrix that depends on rotor electrical angle θ and,
under saturation, on i, and λ m captures permanent-magnet
contributions when present. For linear media, L(θ) is periodic
in θ with harmonics reflecting slotting, saliency, and spatial
permeance variation. The electromagnetic torque follows
from coenergy, [18]

Te(θ , i)=
∂W ′(θ , i)

∂θ
, W ′(θ , i)=

1
2

i⊤L(θ , i)i+i⊤λ m(θ).

When L is independent of i, torque reduces to a quadratic
form whose angular derivative isolates saliency and magnet
interaction terms; the structural origin of each term is inter-
pretable in terms of tooth-tip geometry, magnet pole arc, and
slot opening that shape the air-gap permeance waveform.

Permeance-wave perspectives furnish constructive links
between geometry and inductances. Let nk(φ) denote the
effective turns function of a coil k distributed around the
air gap as a function of circumferential coordinate φ , and
let Λ(φ ,θ) be the air-gap permeance per unit area seen at
location φ with rotor angle θ . Neglecting end effects for the
moment, the mutual inductance between coils i and j can be
written schematically as

Li j(θ) = µ0leff

∫ 2π

0
ni(φ)n j(φ −θ)Λ(φ ,θ)dφ ,

with leff the effective axial length. Slotting, magnet segmenta-
tion, and pole-tip shaping enter through Λ and thereby modu-
late the harmonic content of Li j(θ). This expression clarifies
how changes to tooth width or slot opening affect specific
harmonics of the inductance matrix and therefore the ripple
components of torque and back-electromotive force. By trun-
cating the Fourier series for nk and Λ, one obtains analytical
formulas for dominant inductance harmonics that can be em-
bedded as controlled sources and variable inductors in circuit
networks, enabling rapid parametric sweeps during early de-
sign. [19]

Equivalent circuits inherit frequency dependence through
conductor skin and proximity effects, laminated iron losses,
and winding-to-core capacitances. A stator phase resistance
generalized for frequency f can be modeled as

Rs( f ,T ) = Rs,dc(T )Γskin( f )Γprox( f ),

where Rs,dc(T ) reflects copper resistivity at temperature T ,
and the multiplicative factors Γskin,Γprox capture, respectively,
skin depth and proximity enhancements that grow with f
and slot fill. Iron losses appear as a parallel combination
of hysteresis-like and eddy-current-like branches attached to
the main flux path. A widely used surrogate attaches a con-
ductance G f e(ω) across the magnetizing inductance Lm so

that the iron-loss power is Pf e = ω2L2
mi2mG f e, with G f e fitted

against measurements or finite-element data. Winding-to-
frame and interturn capacitances assemble into a capacitive
network that, together with the machine’s inductive structure,
defines common-mode and differential-mode resonances im-
portant for electromagnetic interference and bearing-current
risk. These capacitive elements arise from slot liner geometry,
end-winding proximity, and insulation thickness; in a circuit
representation, they are placed between phase nodes and sta-
tor frame nodes and between turn segments, retaining explicit
correspondence to layout decisions.

Rotor modeling differentiates machine families. Squirrel-
cage induction machines aggregate bar currents into rotor
circuits with resistances Rrk and leakage inductances Lrk cou-
pled to stator coils by mutual inductances Msk(θ) that rotate
with angle. The slip-dependent dynamics are naturally ex-
pressed via speed-dependent back-emf sources in the rotor
loops. By contrast, permanent-magnet synchronous machines
incorporate a magnetization source that injects a flux λm(θ)
into the stator magnetizing branch; interior variants further
entail d- and q-axis magnetizing inductances whose dispar-
ity arises from anisotropic reluctance pathways through rotor
bridges and flux barriers. In circuit form, a minimal two-axis
network in the rotating reference frame introduces orthogonal
magnetizing branches with inductances Ld ,Lq and couples
them to stator phase circuits by time-varying transformers
whose ratio is defined by the Park transformation. This rep-
resentation recovers the familiar voltage equations in the dq
frame and supports direct incorporation of saturation by letting
Ld(id) and Lq(iq) be nonlinear elements defined by magneti-
zation curves obtained from measurements or finite-element
solutions.

Nonlinearity and hysteresis can be retained at varying fi-
delity levels. A pragmatic approach employs polynomial or
spline approximations for Ld(id) and Lq(iq), ensuring mono-
tonicity and differentiability so that energy functions remain
well defined [20]. A higher-fidelity but more complex option
inserts a Jiles–Atherton-type magnetization element into the
main flux path, realized as a controlled source whose output
flux depends on an internal anhysteretic magnetization and
irreversible–reversible partitioning parameters. In either case,
embedding the nonlinear element within the network supports
harmonic prediction under bias and reveals how operating-
point shifts, such as flux weakening or field-weakening at
elevated speed, alter effective inductances and torque con-
stants. The circuit environment also makes it straightforward
to superimpose small-signal perturbations for identifying dif-
ferential inductances in situ, which is useful for sensorless
control strategies that rely on saliency tracking at low speed.

End effects and three-dimensional structures influence
both inductance and resistance. End-turn leakage is commonly
represented by series inductances Lle per phase obtained from
geometrical formulas or extracted from 3D field computa-
tions. Their values depend on end-turn span, bundling, and
the presence of phase separators. End-turn copper length
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augments Rs and can contribute a nontrivial fraction of total
copper loss in short-stack, high-pole-count machines [21].
In a circuit model, explicit resistive segments for slots and
end turns make it possible to allocate temperature coefficients
separately and to incorporate nonuniform cooling along the
conductor path by assigning lumped thermal nodes coupled to
the electrical network through loss sources. Such co-modeling
is effective when assessing hot-spot risk or quantifying the
benefit of targeted cooling on end-winding regions, which are
often limiting elements during high-torque operation.

Because circuit networks are naturally multiport, they
expose machine–converter interactions in a form amenable
to time-domain simulation with switching. The machine
port presents a position-dependent impedance matrix Z(θ ,ω)
whose elements determine current ripple under pulse-width
modulation and the propagation of common-mode distur-
bances. When the converter is represented with explicit switch
models, dead time and device nonlinearities enter the machine
through nonideal voltage waveforms that excite the induc-
tive–capacitive network over a broad frequency range. In this
setting, the presence of winding-to-frame capacitances and
bearing models determines how common-mode voltage trans-
lates into displacement currents and, potentially, electrical
discharge machining at bearings [22]. Including these ele-
ments in the network assists in assessing trade-offs between
modulation strategies, dv/dt filters, and mechanical mitigation
such as insulated bearings or ceramic coatings.

Parameter identification closes the loop between structure
and equivalent elements. Locked-rotor tests at different angles
θ and currents generate data from which Lss(θ , i) and mutual
terms can be inferred. Standstill frequency response injects
sinusoidal voltages over a range of frequencies to discern
leakage, magnetizing, and iron-loss branches separately. For
permanent-magnet machines, back-emf mapping at low load
yields λm(θ) and its harmonic content, which is informative
about magnet arc and segmentation. Modern practice often
complements these experiments with finite-element model
reduction, whereby detailed field models are run over a grid
of angles and currents and their responses distilled into para-
metric circuit components using least-squares fitting with
regularization that enforces physical monotonicity and passiv-
ity. The resulting hybrid models preserve the speed of circuit
simulation while inheriting the accuracy of field solutions
across the operating envelope of interest. [23]

Analytical structure also enables sensitivity analysis. By
differentiating torque and back-emf with respect to circuit
parameters, one can map manufacturing tolerances to perfor-
mance metrics. Let p denote a vector of parameters such as
slot opening width, magnet thickness, and tooth fillet radius,
and let those map to circuit parameters θc(p). The sensitivity
of average torque T̄e to p follows via the chain rule,

∂ T̄e

∂ p
=

∂ T̄e

∂θc

∂θc

∂ p
,

where ∂ T̄e/∂θc is available in closed form from the circuit

model and ∂θc/∂ p can be obtained from analytical permeance
formulas or sparse finite-element perturbations. Such sensi-
tivities inform tolerancing decisions and provide guidance on
which geometric controls most efficiently reduce torque ripple
or improve efficiency within a given manufacturing process
capability.

The graph-theoretic underpinnings of circuit models fur-
nish clean algebraic conditions for energy consistency and
reciprocity. Representing the magnetic domain with a reluc-
tance network and the electric domain with resistance–inductance
branches, one can write a composite port-Hamiltonian sys-
tem that couples electrical currents and magnetomotive forces
through gyrators whose ratio encodes turns and orientation
[24]. The total stored energy is

H =
1
2

i⊤L(θ , i)i+
1
2

φ
⊤R−1

m (θ ,φ)φ ,

where φ denotes branch fluxes in the reluctance network and
Rm the reluctance matrix. Power-conserving interconnections
guarantee that, absent dissipative and source elements, the
time derivative of H equals the power exchanged with exter-
nal electrical and mechanical ports. This property is valuable
for controller design predicated on passivity, and it provides a
structural check that fitted circuit parameters respect funda-
mental reciprocity and positive definiteness constraints, reduc-
ing the risk of nonphysical behaviors in simulation.

Position-dependent effects, including cogging and torque
ripple, appear as specific harmonic couplings within the net-
work. If Λ(φ ,θ) is expanded as a Fourier series in φ and
θ , the cross-terms that survive spatial integration align with
harmonic orders determined by the least common multiple
of slot and pole counts. In practice, circuit models introduce
controlled sources that inject ripple components into torque
proportional to measured or computed harmonic amplitudes
[25]. The superposition principle then allows independent
tuning of mitigation strategies such as current harmonic in-
jection and tooth-tip optimization by observing the reduction
of targeted coefficients. While such superposition is only ex-
act under linearity, it remains a useful approximation over
moderate excitation levels and supports fast what-if analysis
before committing to more expensive coupled field–circuit
computations.

Capacitive and dielectric effects become salient in high-
switching-frequency, high-voltage drives. A lumped model
includes phase-to-frame capacitances Cp f , interphase capaci-
tances Cpp, and magnet-to-rotor capacitances Cmr. Together
with bearing capacitance Cb and a nonlinear breakdown ele-
ment modeling the lubricant film, the network predicts dis-
charge events as voltage across Cb exceeds threshold. Incor-
porating these elements permits assessment of filter configu-
rations at the converter output or of dv/dt limiting strategies.
Furthermore, common-mode choke models can be appended
explicitly to observe their interaction with machine capac-
itances and to quantify residual current in the presence of
imperfect symmetry. [26]
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Thermal dependence enters circuit parameters through re-
sistivity, magnet remanence, and iron loss coefficients. A cou-
pled electro-thermal network assigns each resistive and loss
element a thermal node with capacitance and conductance to
ambient or coolant manifolds. The electrical network supplies
heat-generation terms that feed the thermal network, which
in turn updates electrical parameters in a quasi-static loop or
through co-simulation. For example, copper resistance varies
approximately linearly with coil temperature, while magnet
flux linkage decreases with increasing temperature accord-
ing to material-specific coefficients. The circuit model thus
evolves over time as the thermal state changes, reflecting der-
ating behavior and guiding the selection of thermal headroom
in control and modulation schedules.

Model order and state selection influence both interpretabil-
ity and numerical conditioning [27]. Minimal per-phase cir-
cuits can be sufficient for efficiency maps and average torque
predictions, but they under-represent harmonic content and
fail to capture cross-couplings critical for ripple and acoustic
noise. Conversely, overly detailed turn-by-turn models with
thousands of elements can become stiff and obscure physical
intuition. A balanced approach constructs hierarchical mod-
els that retain a small number of dominant energy-storage
elements and augment them with frequency-shaped loss sur-
rogates. Balanced truncation and Krylov subspace techniques
adapted to parameterized networks generate reduced mod-
els that remain valid across operating ranges of interest. In
practice, it is advantageous to structure the reduction so that
each retained element or parameter continues to map to a rec-
ognizable physical feature, preserving the transparency that
motivates the circuit-element viewpoint.

The circuit framework also accommodates uncertainty
and variability [28]. Manufacturing tolerances, material batch
differences, and assembly-induced eccentricities can be intro-
duced as bounded perturbations on parameters or as random
fields mapped to circuit elements through regression. Un-
der such uncertainty, one can propagate distributions through
the network to obtain confidence intervals on torque ripple
and efficiency or can formulate robust control objectives that
minimize worst-case performance degradation. Because the
network is computationally light relative to full finite-element
models, Monte Carlo sampling and scenario-based optimiza-
tion become practical even for large populations of machines,
aligning with statistical quality control practices and early
detection of drift in production.

From a systems perspective, the compatibility of circuit
models with converter and grid models is decisive. When a
drive is embedded in a larger system such as a vehicle or a mi-
crogrid, interactions between machine impedance and supply
impedances shape stability and power quality [29]. The input
admittance of the machine–converter pair in the synchronous
frame can be assembled directly from the circuit model and
the converter’s modulation dynamics, enabling impedance-
based stability analyses. For example, the small-signal input
admittance Yin(s,θ) informs whether interactions with line

filters or other converters pose risk of oscillations under weak-
grid conditions. Because the circuit model is parametric in θ ,
one may average Yin over θ for broadband assessments or re-
tain angle dependence where slotting harmonics are suspected
contributors to observed phenomena.

Diagnostic applications benefit from the explicit struc-
ture–parameter linkage. Faults such as interturn shorts, bro-
ken rotor bars, or demagnetization can be represented as local
changes in resistive, inductive, or source elements. The re-
sulting changes in terminal behavior—negative-sequence cur-
rents, sideband growth around fundamental components, or
back-emf distortion—are predicted by the altered network and
suggest targeted residuals for on-line monitoring. Because
the circuit model isolates the affected elements, inversion
from measured signatures to plausible fault magnitudes be-
comes better posed, facilitating condition-based maintenance
strategies without requiring high-fidelity field models in the
loop.

4. Power Electronic Interface and
Switching Effects

The inverter maps DC-link voltage Vdc to phase voltages
through switching devices with finite on-state resistance, dead
time, and parasitic capacitances. A two-level bridge with
switching functions sa,sb,sc ∈{0,1} produces phase-to-negative-
rail voltages vaN = saVdc and analogous expressions for b
and c. Phase-to-neutral voltages relative to the machine in-
ternal neutral follow [30] where M(µ) models modulation
index µ saturation and Edt aggregates dead-time and nonide-
alities. A first-order dead-time error approximation for phase
k ∈ {a,b,c} is

edt,k ≈
Vdc

2π fs
sgn(ik) tdt ,

with device dead time tdt . In rotating coordinates, the error
appears as an affine disturbance on vd ,vq with magnitude
scaling in ∥is∥ and Vdc.

DC-link dynamics couple to the AC side through instanta-
neous power balance [31]. With input source current idc and
capacitor Cdc,

CdcV̇dc = idc −
3
2

vd id + vqiq
Vdc

− iloss(Vdc,T ),

linking current control and bus voltage variations under regen-
erative or load transients. Common-mode voltage is

vcm =
va + vb + vc

3
,

whose spectral content excites bearing currents and EMI.
Switching states constrain the reachable set of [vd ,vq] causing
hexagonal modulation limits that clip circular references at
high µ . The feasible set V can be encoded as

V =
{

v ∈ R2 ∣∣Hv ≤ h
}
,
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with H representing the space-vector polygon. The intersec-
tion of V with current dynamics dictates attainable accelera-
tion and torque slew.

Losses are partitioned into conduction and switching com-
ponents [32]. A current-dependent conduction loss per device
is Pcond ≈ Roni2 +Vth|i|, while switching loss per cycle ap-
proximates Esw(i,Vdc,T ) yielding

Psw ≈ fs Esw(irms,Vdc,T ).

Integration across phases and switching events produces in-
verter dissipation that feeds thermal states and constraints.

5. Control Architectures and Stability
Analysis

A rotating-frame current controller regulates id and iq using
voltage references that compensate cross-coupling and back-
EMF. A decoupled form is

v∗d = Rsid +Ld i̇d −ωeLqiq +ud ,

v∗q = Rsiq +Lq i̇q +ωe(Ld id +λm)+uq,

where ud ,uq arise from feedback, typically proportional-integral
in discrete time. A compact state-space with x = [id , iq]⊤ and
u = [vd ,vq]

⊤ gives

ẋ = A(ωe)x+Bu+d(ωe,λm),

with A skew-symmetric modulated by ωe. A Lyapunov analy-
sis for linearized dynamics introduces a quadratic candidate
V (x̃) = x̃⊤Px̃ and conditions on feedback K such that

V̇ = x̃⊤
(
(A−BK)⊤P+P(A−BK)

)
x̃ ≤−α∥x̃∥2,

for some α > 0. Choice of K through a linear-quadratic
regulator with cost

J =
∫

∞

0

(
x̃⊤Qx̃+u⊤Ru

)
dt

yields an algebraic Riccati equation that balances current
error and voltage effort [33]. When current limits and voltage
polygons are binding, model predictive control with horizon
N solves

min
{uk}N−1

k=0

N−1

∑
k=0

(
∥xk+1 −xref∥2

Q +∥uk∥2
R
)
, s.t. xk+1 =Adxk+Bduk+wk, uk ∈Vd ,

with discretized Ad ,Bd under sampling time Ts, disturbance
wk, and feasible inverter set Vd . Finite-control-set strategies
restrict uk to switching vectors, trading convexity for direct
switching decisions.

Disturbance rejection improves with feedforward compen-
sation of back-EMF and with observers that estimate load
torque and parameter drift. A disturbance observer that aug-
ments plant dynamics with a bias state b follows

˙̂x = Ax̂+Bu+L(y− ŷ), ˙̂b = γ(y− ŷ),

with y measured currents or speed. Robust synthesis in the
presence of uncertainty sets ∆A,∆B within norm-bounded
sets and leverages H∞ conditions∥∥∥∥[ WsS

WtT [34]

]∥∥∥∥
∞

< 1,

for sensitivity S and complementary sensitivity T weighted by
Ws,Wt . Passivity-based formulations exploit energy storage
in inductances and inertia, shaping interconnections so that
overall input-output maps are dissipative.

In two-inertia systems, notch filters or active damping
loops address torsional resonances. A simplified resonance

at ωr =
√

Ks(J−1
m + J−1

l ) motivates controller design that en-
forces phase margin across [ωr/2,2ωr]. The combined con-
straints of modulation limit, current saturation imax, and DC-
link variation tighten feasible gains, guiding bandwidth selec-
tion typically within 5% to 20% of electrical frequency for
current loops and a lower range for speed loops.

6. State Estimation, Sensing, and
Robustness

Sensor selection determines observability [35]. Terminal
voltage and phase currents enable estimation of flux link-
ages, while speed sensing via encoders or resolvers improves
low-speed torque accuracy. In sensorless operation for syn-
chronous machines, back-EMF methods degrade at low speed,
prompting saliency-based high-frequency injection with small-
signal models. A compact estimator for rotor position θ̂e uses
an extended Kalman filter with state x = [id , iq,ωe,θe]

⊤ and
measurement y= [id , iq]⊤: ˙̂x= f(x̂,u)+K(t)(y− ŷ), K(t)=
P(t)C⊤R−1, Ṗ = AP+PA⊤+Q−PC⊤R−1CP. Here Q
and R encode process and measurement covariances chosen to
balance responsiveness and noise attenuation. Nonlinearities
and saturation can be handled via sigma-point updates where
a deterministic sampling of x captures higher-order moments
without explicit linearization.

Sliding-mode observers introduce discontinuous injection
to overcome matched uncertainties:

˙̂x = f(x̂,u)+L(y− ŷ)+η sat
(

y− ŷ
φ

)
,

with boundary layer φ and gain η scaling the robustness mar-
gin; chattering is reduced by continuous approximations. For
induction machines, rotor flux estimation uses

˙̂ψr =−Rr

Lr
ψ̂r +

LmRr

Lr
is − j(ωe − ω̂r)ψ̂r + ℓ(ψs − ψ̂s) ,

with ω̂r updated from torque balance and slip models. Injection-
based methods exploit saliency to extract position through de-
modulation of high-frequency current response; identifiability
depends on saturation level, temperature, and operating point.
[36]
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Loss Type Expression Dependence Typical Range Effect
Conduction Pcond = Roni2 +Vth|i| i, T 0.1–5 W Heat generation
Switching Psw = fsEsw(i,Vdc,T ) fs, Vdc, T 0.5–10 W Dynamic losses
Gate Drive ≈ QgVg fs fs, device type 0.01–1 W Driver heating
Snubber =CsV 2

dc fs Cs, Vdc, fs 0.1–3 W Surge protection

Table 4. Major inverter loss components and dependencies.

Control Scheme Model Basis Constraint Handling Computation Stability Guarantee
PI (Decoupled) Linear None Low Local
LQR Linear-Quadratic Implicit Moderate Global (nominal)
MPC (Continuous) Discrete State-Space Explicit High Bounded Horizon
FCS-MPC Switching Set Direct High Finite-Step
H∞ Uncertain Model Robust Norm Very High Guaranteed

Table 5. Comparison of current-control architectures.

Parameter Symbol Typical Value Unit Role Design Sensitivity
DC-Link Capacitance Cdc 2.2 mF Bus voltage stability High
Switching Frequency fs 10 kHz Dynamic response Medium
Dead Time tdt 2 µs Voltage distortion High
Modulation Index µ 0.8 – Output voltage scaling High
Common-Mode Voltage vcm ¡50 V EMI source Medium

Table 6. Representative inverter and control parameters.

Robustness analysis employs input-to-state stability. For
disturbance d entering additively,

˙̃x = (A−BK)x̃+Ed,

a quadratic Lyapunov function yields

∥x̃(t)∥ ≤ κe−λ t∥x̃(0)∥+ γ sup
τ∈[0,t]

∥d(τ)∥,

with gain γ bounding steady-state sensitivity to noise and
parameter drift. Measurement chain aspects, including shunt
resistor tolerances, ADC nonlinearity, sampling jitter, and
anti-alias filtering, shape effective R in estimation and the
achievable bandwidth without amplifying quantization noise.
Calibration and online adaptation can be cast as recursive least
squares with forgetting factor β :

θ̂k+1 = θ̂k+Pk+1φ
⊤
k
(
yk −φkθ̂k

)
, Pk+1 =

1
β

(
Pk −

Pkφkφ⊤
k Pk

β +φ⊤
k Pkφk

)
,

for parameter vector θ describing, for instance, Rs and Ld ,Lq
variation with temperature. [37]

7. Performance Optimization and
Multiobjective Trade-offs

A drive’s operational merit is rarely captured by a single scalar.
Efficiency, torque ripple, current distortion, thermal headroom,

bus utilization, and acoustic noise form an interdependent
vector of metrics. Multiobjective optimization formulates a
Pareto problem

min
x∈X

F(x) =


f1(x)
f2(x)
· · ·

fm(x)

 , s.t. gi(x)≤ 0, h j(x) = 0,

where x aggregates controller gains, modulation parameters,
and machine setpoints. Weighted Tchebycheff scalars or ε-
constraint methods generate representative fronts. A common
energy-quality trade-off is posed as [38]

min
u(·)

∫ T

0

(
αPloss(t)+β r2

T (t)+ γ∥∆u(t)∥2) dt,

where Ploss accumulates copper, iron, and switching losses;
rT is torque ripple; and ∆u penalizes rapid voltage changes
that worsen EMI. Subject to current and voltage constraints,
convex surrogates emerge by quadraticization around operat-
ing points, enabling efficient solution via sequential quadratic
programming.

Loss models couple machine and inverter states. Copper
loss is Pcu = 3Rsi2rms with Rs(T ) = Rs,0[1+αT (T −T0)]. Iron
losses approximate

Pf e ≈ kh feB2
pk + ke f 2

e B2
pk,

combining hysteresis and eddy contributions with electri-
cal frequency fe and peak flux Bpk. For a given torque T ◦,
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Objective Metric Symbol Nature Typical Weight Effect on Drive
Efficiency η Maximize High Reduces total losses
Torque Ripple rT Minimize Medium Improves smoothness
Current Distortion THDi Minimize Medium Lowers EMI and heating
Thermal Stress T̄j,∆Tj Limit/Minimize High Extends component life
Acoustic Noise Arms Minimize Low Enhances user comfort

Table 7. Representative performance objectives in multiobjective drive optimization.

reference selection (i◦d , i
◦
q) on the locus Te = T ◦ minimizes

Pcu +Pf e. The resulting map defines an efficiency-oriented
current scheduler that transitions toward flux weakening when
|ωe| grows and voltage headroom shrinks:

min
id ,iq

Pcu(id , iq)+Pf e(id , iq,ωe) s.t. Te(id , iq)=T ◦, ∥v(id , iq,ωe)∥≤Vlim.

Solution sensitivity to parameter uncertainty motivates robust
variants [39] minx maxδ∈∆ F(x,δ ) under bounded ∆ capturing
Rs and L variation, dead-time change, and bus sag. Sampling-
based approximations compute expected and worst-case ob-
jectives across scenarios.

Torque ripple arises from spatial harmonics and switching.
Harmonic compensation injects targeted current components.
For dominant order h,

iq(t) = iq0 + ∑
k∈H

Iqk sin(hkθe +φk),

with amplitudes Iqk chosen to cancel identified torque compo-
nents subject to current constraints. In predictive control, the
cost includes a term on estimated ripple over the horizon via
a harmonic model embedded in Ad .

EMI and acoustic objectives reflect voltage slew and ra-
dial force harmonics [40]. A pragmatic surrogate penalizes
squared derivatives of phase voltage and the magnitude of
specific space-vector transitions. With discrete switching, the
count of large-vector jumps is minimized via graph-based
selection where nodes denote switching states and edges carry
weights proportional to common-mode changes.

8. Thermal Dynamics, Reliability, and
Lifecycle Considerations

Thermal evolution constrains sustained performance and ac-
celerates aging. A lumped network for the stator, rotor, and
inverter uses

Cθ θ̇ =−Gθ θ +Hθ p(t)+uθ ,

where θ collects temperatures, p(t) stacks loss sources, Gθ

models conduction and convection, and uθ covers ambient
and coolant influences. With coolant flow rate ṁ and inlet
temperature Tin, boundary coefficients vary with Reynolds
and Nusselt correlations; within design, uncertainty can be
handled via interval parameters. The inverter thermal path

features device junction-to-case Rθ jc, case-to-sink Rθcs, and
sink-to-ambient Rθsa, producing junction temperature

Tj(t)=Ta+(Rθsa ⋆Psink)(t)+(Rθcs ⋆Pmod)(t)+
(
Rθ jc ⋆Psw+cond

)
(t),

with ⋆ denoting convolution with step responses. Mission
profiles with variable torque and speed generate temperature
cycles characterized by amplitude ∆Tj and mean T̄j. Cycle
counting and physics-based aging models map these to life-
time consumption. An Arrhenius acceleration factor for tem-
perature and a Coffin–Manson law for solder fatigue combine
as

AFT = exp
(

Ea

k

(
1

Tre f
− 1

T̄j

))
, N f =C (∆Tj)

−m ,

leading to damage per cycle D = 1/N f and cumulative dam-
age Dtot = ∑D. Reliability over time t follows a Weibull
model

R(t) = exp

[
−
(

t
η

)β
]
, h(t) =

β

η

(
t
η

)β−1

,

with scale η and shape β updated from field data or acceler-
ated tests.

Thermal coupling feeds back to electrical parameters;
Rs(T ) increases, lowering efficiency and controller gain mar-
gin if not compensated. Magnet temperature alters λm and
demagnetization risk at high T̄ . Design guard bands preserve
at least 10% to 20% voltage and thermal headroom for ex-
pected transients [41]. Cooling design balances pump power
against temperature reduction; an optimization may minimize∫ T

0

(
ρpṁ3 +ρePloss(t)

)
dt

under temperature constraints, with ρp,ρe representing weights
on pumping and electrical losses.

9. Implementation Aspects: Real-Time
and Digital Considerations

Real-time realization discretizes continuous dynamics and
introduces sampling delay, computational latency, and quanti-
zation. With zero-order hold and sampling time Ts,

xk+1 =Adxk+Bduk+wk, Ad = eATs , Bd =
∫ Ts

0
eAτ dτ B.
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Loss Component Expression Dominant Variable Order of Magnitude Model Type
Copper Loss Pcu = 3Rsi2rms irms, T 10–100 W Quadratic
Iron Loss Pf e = kh feB2

pk + ke f 2
e B2

pk fe, Bpk 5–50 W Polynomial
Switching Loss fsEsw(i,Vdc,T ) fs, Vdc 1–20 W Empirical
Conduction Loss Roni2 +Vth|i| i 1–10 W Piecewise Linear
Pump Power ρpṁ3 ṁ 0.1–2 W Cubic

Table 8. Energy loss sources contributing to multiobjective optimization.

Implementation Factor Symbol Typical Value Impact Mitigation Strategy
Sampling Time Ts 100–200 µs Phase delay, reduced stability Select faster ADC/CPU
Computation Delay τc 10–50 µs Effective lag in loop Predictor or compensation
Quantization Step ∆ 10−4–10−3 Steady-state error Increase word length
Dead Time tdt 1–3 µs Voltage distortion Adaptive compensation
Jitter Jt ¡5 µs Random timing error Task synchronization

Table 9. Digital and real-time implementation parameters affecting drive performance.

Controller execution consumes τc of the interval, effectively
adding one-step delay. Discrete-time stability margins shrink
as ωbTs approaches unity, where ωb is loop bandwidth [42].
Fixed-point implementations must bound rounding; for word
length n and dynamic range R, quantization step ∆ = R/2n

should maintain signal-to-quantization-noise ratios above tar-
get. A conservative bound on steady-state error due to quanti-
zation in an integral controller with gain ki is

e∞ ≤ ∆

ki
.

Scheduling affects jitter and effective delay. An asyn-
chronous PWM timer aligned with ADC sampling reduces
measurement corruption by switching edges. Dead-time com-
pensation requires sign-correct current estimates; practical
schemes filter sign to avoid rapid toggling near zero crossings.
Anti-windup strategies limit integral states upon saturation of
v∗d ,v

∗
q by projecting onto the inverter polygon Vd . For predic-

tive controllers, solving times must remain a small fraction
of Ts; warm starts, condensing, and explicit solvers with pre-
computed regions reduce burden [43]. When computational
headroom is narrow, a hierarchical strategy uses a fast inner
current loop and a slower optimization-based scheduler for
setpoints, achieving most benefits at reduced cost.

Fault detection leverages residuals between measured and
predicted currents and bus voltage. A residual rk = yk − ŷk
with CUSUM or generalized likelihood tests flags anomalies
exceeding thresholds adapted to operating point. Open-phase
faults manifest as persistent asymmetry and elevated common-
mode voltage, prompting reconfiguration to a two-phase con-
trol mode with derated torque capability. For safety-critical
tasks, independent monitoring mitigates common-cause fail-
ures, and deterministic execution with bounded worst-case
runtimes supports certification requirements.

Verification and validation close the loop between model
and implementation [44]. Plant–controller co-simulation with

switching models assesses ripple and EMI; reduced-order
averaged models accelerate exploration. Parameter identifi-
cation on prototypes employs current injection and torque
measurements to refine Rs, Ld , Lq, and friction terms. Accep-
tance criteria cover efficiency at representative points, torque
ripple within specified bands, thermal margins under sustained
loads, and robustness against bus perturbations of ±10% and
ambient changes of tens of degrees Celsius. Data logging at
synchronized rates enables spectral analyses that separate me-
chanical, electromagnetic, and switching contributions within
observed signals.

10. Conclusion
The design of electrical drive systems unfolds as an inter-
connected sequence of modeling, control, and optimization
activities, each constrained by practical implementation reali-
ties and lifecycle considerations. At the heart of this process
lies the pursuit of precise, efficient, and reliable conversion be-
tween electrical and mechanical energy [45]. The complexity
arises because every modeling assumption and control choice
directly influences the physical limits, losses, and long-term
durability of the system. Engineers must therefore navigate
this multidimensional design space with both analytical rigor
and pragmatic awareness, ensuring that theoretical formula-
tions translate into tangible performance under real-world
operating conditions.

The modeling phase establishes the physical and math-
ematical foundation of the drive. Electrical machines and
converters are described through equations capturing electro-
magnetic coupling, torque production, and dynamic response.
The use of field-oriented formulations provides a coordinate
system that aligns with the rotating magnetic field, transform-
ing the inherently coupled three-phase quantities into nearly
decoupled direct and quadrature axes. This transformation
exposes the internal structure of torque and flux regulation,
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offering clarity and controllability that would be obscured
in the original stationary frame [46]. Compatible inverter
models complement these formulations by linking the com-
manded voltage vectors to the actual phase voltages delivered
by the power electronic stage. However, this ideal structure is
never perfect: nonidealities such as dead-time, semiconductor
voltage drops, and magnetic saturation reappear as bounded
disturbances that perturb the otherwise elegant decoupling.
These disturbances, though small, have critical implications
for precision and efficiency, demanding careful characteriza-
tion and compensation strategies within the control design.

Once the physical and coordinate framework is estab-
lished, attention turns to control architectures. Classical
rotating-frame control, typically based on proportional-integral
(PI) current regulators, remains a mainstay due to its sim-
plicity, robustness, and ease of implementation. Yet as per-
formance demands rise—through faster dynamics, tighter
tolerances, or higher efficiency—more advanced techniques
emerge [47]. Predictive control methods leverage discrete-
time models to forecast system behavior and select optimal
control actions that minimize multiobjective costs under ex-
plicit constraints. Robust control formulations, including H∞

and sliding-mode strategies, aim to preserve stability and
performance in the presence of parameter uncertainty and
external disturbances. Remarkably, despite their different
philosophies, all these controllers can be expressed in a unified
state-space language. This representation facilitates transpar-
ent reasoning about stability margins, constraint handling, and
disturbance sensitivity, and it allows designers to quantify how
model uncertainty propagates into closed-loop performance
degradation.

Estimation and sensing constitute another essential dimen-
sion of drive system design [48]. Accurate knowledge of rotor
position, speed, and flux linkage is vital for field-oriented con-
trol, yet direct measurement is often limited by cost, space, or
environmental factors. At low speeds, observability of certain
machine states deteriorates, especially in sensorless configu-
rations where back electromotive force (EMF) signals vanish.
Estimators such as extended Kalman filters, Luenberger ob-
servers, and model reference adaptive systems are therefore
employed to reconstruct unmeasured states from available
current and voltage data. These estimators must also adapt to
thermal effects, magnetic saturation, and gradual parameter
drift, ensuring that control actions remain properly aligned
even as machine characteristics evolve over time. Sensing
imperfections—such as current offset, phase delay, or quanti-
zation—are similarly addressed through calibration, filtering,
and redundancy, maintaining the integrity of the feedback
loop under adverse conditions.

Performance optimization spans an even broader horizon,
linking control design to the drive’s energetic and thermal
behavior [49]. A single control objective, such as torque
accuracy, rarely suffices; instead, engineers confront a constel-
lation of competing goals. Minimizing current ripple, reduc-
ing electromagnetic interference (EMI), and limiting thermal

stress often conflict with maximizing dynamic response or
minimizing losses. Multiobjective optimization frameworks
provide a structured way to expose and explore these trade-
offs. Rather than collapsing diverse metrics into a single
weighted cost, such formulations map the Pareto front—the
set of nondominated solutions where improvement in one
objective inevitably worsens another. This explicit view en-
ables informed decisions about operating priorities, allowing
design teams to align their choices with application-specific
requirements, whether they concern efficiency, smoothness,
or lifespan. Furthermore, robust optimization variants incor-
porate uncertainty in plant parameters, ambient conditions,
and mission profiles, ensuring that performance remains ac-
ceptable even when real-world deviations occur. [50]

Thermal dynamics and reliability analysis serve as the
bridge between electrical and mechanical domains, translat-
ing control decisions into physical consequences over time.
Electrical losses in conductors and semiconductors generate
heat, leading to temperature cycles that influence material
degradation and component aging. Models of heat trans-
fer, both transient and steady-state, predict how these losses
distribute among machine windings, cores, and cooling sur-
faces. Reliability models then use these temperature profiles
to estimate lifetime consumption of critical elements such
as bearings, insulation, and semiconductor junctions. This
coupling provides a quantitative foundation for derating strate-
gies—operating below nominal limits to extend life—or for
designing advanced cooling systems that permit higher per-
formance without excessive thermal stress [51]. The result is
a feedback loop between control aggressiveness and thermal
resilience: faster torque transients or higher switching fre-
quencies can improve response but accelerate fatigue, while
gentler operation enhances longevity at the cost of dynamic
agility.

Real-time implementation brings the theoretical design to
life, subjecting all assumptions to the constraints of digital
computation and embedded execution. The controller, often
running on a digital signal processor or field-programmable
gate array, must execute its tasks within microsecond-scale
sampling intervals. Quantization, computational delays, and
task scheduling introduce deviations from the ideal continuous-
time model. Verification and validation processes therefore
confirm that numerical effects, code execution times, and in-
terrupt handling remain within tolerances that preserve closed-
loop stability. In this stage, simulation-based validation tran-
sitions to hardware-in-the-loop testing and full system proto-
typing, where electromagnetic interference, sensor noise, and
load disturbances reveal behaviors that models could only ap-
proximate [52]. The iterative refinement between simulation
and experiment ensures that the implemented system meets
its analytical design targets under real operational stress.

The synthesis of all these layers—modeling, control, op-
timization, sensing, thermal management, and implementa-
tion—forms the essence of modern electrical drive engineer-
ing. Each decision influences multiple others, and progress de-
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pends on balancing fidelity, complexity, and feasibility. High-
fidelity models enhance prediction accuracy but demand more
computational resources; sophisticated controllers promise
superior performance but increase sensitivity to parameter
errors and software complexity. Optimization frameworks
clarify trade-offs but require trustworthy models and exten-
sive computation. The art of drive design lies in aligning these
elements so that no subsystem is overdesigned or underuti-
lized relative to the overall objectives [53]. The ultimate aim
is to produce a drive system that achieves its targeted effi-
ciency, dynamic response, and durability without overstating
performance or underestimating limitations.

In this integrative view, the electrical drive is not merely
a collection of components but a cohesive electromechan-
ical organism. Its behavior reflects the harmony—or ten-
sion—between physical principles, control theory, and com-
putational realization. By embedding robustness at every level,
from modeling assumptions to digital scheduling, engineers
can navigate the intricate trade space that defines modern
drive systems. The outcome is a balanced design philosophy
where performance, reliability, and practicality coexist, en-
suring that each watt of electrical input and each degree of
mechanical motion contributes predictably to the system’s
intended purpose. Through this disciplined yet adaptive pro-
cess, electrical drive technology continues to evolve as one of
the most refined embodiments of applied systems engineering
[54].
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