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Abstract

Business-to-consumer digital retail platforms generate extensive observational traces of browsing, search,
transaction, messaging, and support interactions, which can be integrated into customer 360 representations.
These representations combine identifiers, event histories, inferred preferences, and contextual attributes into
longitudinal profiles capable of supporting targeted personalization. Despite the availability of such data, many
operational strategies remain based on response prediction or heuristic segmentation, which can systematically
conflate correlation with causal impact and lead to inefficient use of incentives, exposure, and capacity. This
paper examines a technical framework for causal inference and uplift modeling built directly on integrated
customer 360 data with the objective of estimating heterogeneous treatment effects and deploying stable,
auditable targeting policies. The discussion focuses on definition of exposure units, temporal alignment of
features and outcomes, assumptions for identification in mixed experimental and observational regimes, and
the use of orthogonal, doubly robust, and policy-learning methods that operate under budget and operational
constraints. Attention is given to the interaction between model structure, identity resolution strategies,
and multi-channel treatment assignment, as well as to mechanisms for drift detection, overlap monitoring,
and fairness-aware analysis. The framework is intended to be implementable in production environments
that require strict latency, governance, and privacy controls, while remaining explicit about assumptions and
sensitivities. The paper is descriptive rather than promotional, outlining a set of consistent design choices and
analytical components that can be combined to support cautious deployment of causal personalization in B2C
digital retail platforms.
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Concept Definition Challenge Example

Customer 360
Predictive Models
Causal Models

Unified profile integrating events
Estimate purchase probability
Estimate treatment effects

Identity uncertainty
Confound outcome vs. effect
Identification limits

Cross-device linkage
Over-targeting high-propensity users
Targeting uplift-positive users

Uplift Objective Incremental impact of treatment

Overlap, bias Discount allocation

Table 1. Contrast between predictive and causal personalization paradigms.

Data Layer Input Source

Identifier Risk

Raw Events
Identity Resolution
Feature Layer
Outcome Layer

Web/mobile/app logs
Cross-source mapping
Aggregated histories

Post-treatment metrics

Hashed emails, Loyalty IDs

Cookies, Device IDs Fragmentation
Mis-linkage
Temporal leakage

Censoring bias

Stable person key
Session/event time

Table 2. Customer 360 architecture layers and associated risks.

edits, payments, returns, loyalty events, email opens,
notification interactions, and helpdesk resolutions. Cus-
tomer 360 architectures emerged as a pragmatic response
to the fragmentation of this information across devices,
channels, and internal services. They integrate hetero-
geneous identifiers and event streams into longitudinal
profiles intended to provide a unified view of customer
behavior, preferences, and value. In practice, this in-
tegration is constrained by identity uncertainty, partial
observability, regulatory limits, and engineering trade-
offs, yet it remains sufficiently informative to support a
wide range of personalization tasks, including ranking
products, allocating discounts, selecting creatives, and
orchestrating contact strategies. [2]

Despite the richness of integrated customer 360 data,
many personalization and marketing systems are opti-
mized using objectives and methodologies that are pri-
marily predictive rather than causal. Conventional uplift-
insensitive approaches train models to estimate quanti-
ties such as conversion probability, short-term revenue,
or engagement under existing policies, and then treat
high-probability or high-revenue predictions as high-value
targets. This design conflates outcomes that would oc-
cur without intervention with outcomes induced by in-
tervention. Customers with high baseline purchase propen-
sity are often prioritized for expensive promotions, while
customers whose behavior might be meaningfully shifted
by targeted incentives may be overlooked if they are less
predictable or historically underexposed [3]. Over time,
such strategies can systematically distort resource allo-
cation, skew apparent campaign performance metrics,
and create feedback loops wherein model-driven policies
reinforce the very patterns on which they were trained.

Causal inference and uplift modeling provide a for-
mal framework for separating correlation from incremen-
tal impact. Instead of asking whether a customer is
likely to purchase, these methods seek to estimate how
that probability would change if the customer were treated
versus not treated, under clearly defined interventions.
The central object of interest is the heterogeneous treat-

ment effect, defined at the level of an exposure unit that
couples a decision opportunity with a specific customer
and context [4]. This perspective acknowledges that not
all customers respond similarly to the same intervention
and that the value of personalization is realized when
treatments are directed where their causal effect is posi-
tive and sufficiently large relative to cost and constraints.
However, estimating such heterogeneous effects reliably
in operational retail environments requires resolving a se-
ries of modeling, identification, and systems challenges
that arise from the use of mixed experimental and obser-
vational data, from complex assignment logic, and from
the dynamics of evolving platforms.

The practical environment of B2C digital retail com-
plicates naive applications of causal methods in several
ways. Treatments are not limited to single, cleanly ran-
domized campaigns; instead, customers may simultane-
ously encounter multiple overlapping interventions such
as banners, recommendations, email offers, mobile push
notifications, and loyalty nudges, often governed by hand-
crafted rules, prioritization policies, or machine-learned
rankers [5]. Assignment mechanisms are frequently only
partially documented and can change over time in re-
sponse to business priorities. Furthermore, observed
logs encode the results of past optimization regimes,
meaning that the data are generated under policies that
selectively expose certain subpopulations to certain ac-
tions. This induces selection effects that violate the as-
sumptions of simple observational estimators unless ex-
plicitly addressed. At the same time, large-scale plat-
forms do run randomized experiments, but these ex-
periments may focus on narrow variants or short win-
dows, and their results must be carefully integrated with
broader observational histories to obtain useful coverage
of the feature space. [6]

Customer 360 representations interact with causal
objectives in nontrivial ways. Identity resolution proce-
dures define which events are assigned to which units,
and any mis-linkage or fragmentation alters both es-
timated propensities and outcomes. Feature engineer-
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Exposure Type Outcome Window

Metric Decision Unit

Email Promotion 7 days
Omnsite Banner Same session
Push Notification 24 hours
Loyalty Offer 14 days

Click/Add-to-cart

Customer-email pair
Page view
App session
Customer-period

Conversion rate

Engagement
Redemption

Table 3. Examples of exposure units and temporal outcome definitions.

Model Stage Input Output Key Operation
Nuisance Estimation X,T,Y é(x), fy (x) Cross-validation folds
Orthogonalization é, V¥ pseudo-outcome  Variance truncation
Uplift Learning v, X 7(x) Ensemble training
Policy Derivation T,c(x) T (x) Threshold tuning

Table 4. Stages of causal uplift model training pipeline.

ing pipelines compress behavior, demographics, context,
and history into covariates used both for treatment as-
signment and for effect estimation, making them central
to any claim of conditional exchangeability. Choices
about time windows, aggregation functions, and inclu-
sion of cross-channel interactions determine whether im-
portant confounders are captured or omitted [7]. Tempo-
ral alignment rules that constrain features to pre-exposure
information and outcomes to post-exposure windows must
be strictly enforced to avoid subtle forms of data leak-
age that can inflate apparent performance or bias effect
estimates. A coherent introduction to uplift modeling
for digital retail must, therefore, treat these represen-
tational and temporal design decisions as foundational
rather than peripheral.

The motivation for integrating causal inference with
customer 360 data is not to assert that every person-
alization decision can be perfectly optimized, but to en-
able a disciplined treatment of what can be learned from
available data under transparent assumptions. In partic-
ular, the use of heterogeneous treatment effect estimates
for targeting must be grounded in explicit identification
strategies [8]. In purely randomized settings, the link be-
tween treatment and outcomes is straightforward, and
uplift learning reduces to exploiting experimental vari-
ation to uncover segments with different responses. In
observational or hybrid settings, plausible causal inter-
pretation depends on capturing the main drivers of as-
signment in the feature set and on monitoring violations
of overlap, where certain customers are almost always or
almost never treated. When such violations are severe,
it may be more appropriate to report partial or local
effects, introduce additional exploration to restore sup-
port, or restrict policies to regions of the feature space
with adequate coverage. The introduction of these dis-
tinctions is essential for avoiding unqualified use of uplift
scores as if they were universally valid. [9]

The targeting problem becomes more intricate once
costs, budgets, capacity limits, and exposure constraints
are considered. Digital retailers often operate under ex-

plicit or implicit limits on promotional spend, number
of contacts per customer over given intervals, available
impressions in key placements, and inventory levels for
promoted items. Under such conditions, uplift modeling
is coupled with a policy learning problem in which the
aim is to allocate treatments where expected incremen-
tal benefit per unit cost is highest, while satisfying a set
of structural constraints. The presence of constraints
converts uplift estimation from a purely statistical ex-
ercise into an input for optimization, requiring that es-
timates be sufficiently stable and calibrated to support
ranking decisions [10]. It also suggests the need to quan-
tify uncertainty, so that policies can be tuned conserva-
tively and adjusted as more evidence accumulates.

Deployment and lifecycle considerations influence the
design of causal personalization systems from the out-
set. Real-time decision services face latency and reli-
ability requirements that limit the complexity of mod-
els and feature computations that can be executed syn-
chronously. This motivates the separation of concerns
between offline pipelines that estimate uplift functions
using flexible approaches such as ensemble learners or
orthogonal methods, and online services that apply dis-
tilled versions of these models using a constrained and
well-monitored feature set. Furthermore, continuous ex-
perimentation and exploration are needed to preserve
the ability to learn from new data, detect drift, and
reassess the validity of identification assumptions [11].
Exploration, in turn, must be integrated with the pol-
icy that exploits existing uplift estimates, so that the
combined system maintains sufficient overlap without
introducing uncontrolled variability in customer experi-
ence.

Fairness, interpretability, and governance provide an-
other dimension that shapes introductory formulations
of causal uplift modeling in retail. When treatments in-
clude discounts, differential service levels, or visibility
advantages, systematic disparities in allocation across
demographic or behavioral groups may raise regulatory,
ethical, or reputational concerns. While uplift optimiza-
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Lifecycle Phase Goal

Mechanism Artifact

Stable event capture
Temporal correctness
Reproducibility
Real-time scoring

Data Ingestion
Feature Store
Model Registry
Decision Service

Deterministic mapping
Versioned training runs

Raw tables
Reusable features
Model metadata

Log records

Append-only logs

Stateless execution

Table 5. End-to-end system integration and model lifecycle management.

Governance Aspect Focus

Implementation Outcome

Fairness Group parity
Traceability Decision logging
Privacy Data minimization
Monitoring Drift detection

Monitor uplift by group
Versioned policy IDs

Calibration diagnostics

Disparity alerts
Auditable history
Controlled joins
Stable overlap

Tokenized identifiers

Table 6. Governance and monitoring dimensions in uplift system operation.

tion naturally directs resources where estimated effects
are higher, this optimization must be examined for un-
intended group-level patterns. In addition, because up-
liftt models are built upon customer 360 features that
may correlate with sensitive attributes, it is necessary
to understand how effect heterogeneity is being captured
and whether certain signals should be excluded or con-
strained. The introduction of governance structures, in-
cluding documentation of model assumptions, logging
for decision traceability, and procedures for auditing
group-level outcomes, is therefore integral to the practi-
cal framing of uplift modeling in this context.

2. Customer 360 Data Architecture and
Temporal Design

Customer 360 data architectures are typically constructed
as layered models, beginning with raw events captured
from instrumentation in web and mobile applications,
transactional systems, email and notification services,
loyalty and subscription platforms, and support tools.
These events are associated with identifiers that may in-
clude cookies, device IDs, hashed emails, account IDs,
and in-store loyalty tokens [12]. The identity resolution
layer produces a mapping from these source identifiers
to a stable person or household key. Each mapping de-
cision introduces the risk of linking distinct individuals
or fragmenting a single individual across multiple keys,
and these risks propagate into subsequent estimation.
A central requirement for causal analysis is that the
unit of decision, the features used for decisioning, and
the outcome definition are temporally consistent and do
not leak post-treatment information. Let the basic ex-
posure unit be defined as a tuple indicating that an in-
dividual was eligible for and considered for a treatment
at a specific decision time [13]. For each exposure unit,
features are derived from events strictly preceding that
time. Outcomes are measured in a fixed or variable
window following the exposure, depending on the na-
ture of the intervention. For example, for a promotional

email treatment, the outcome might be binary conver-
sion within seven days; for an on-site recommendation
banner, it might be click or add-to-cart within the same
session or a defined short window.

Formally, consider a set of individuals indexed by i
and exposure events indexed by j [14]. Let X;; be the
feature vector constructed from the history of individual
i up to exposure time f;;, let T;; be an indicator or cate-
gorical variable encoding the treatment assigned at that
exposure, and let ¥;; be the outcome measured after a
specified lag. The temporal design requires that X;; ex-
cludes any event with timestamp greater than or equal
to t;; and that ¥;; is insensitive to censoring choices that
depend on post-treatment behavior unrelated to the out-
come of interest.

Xij:r‘(ji’f(s) :s<t,‘j> (1)

Here 47 denotes the event history for individual i,

and I' is a deterministic feature mapping. Outcomes are

then defined by an aggregation operator over a window

(tij,t;j + A] that is held fixed during modeling for compa-
rability across treatments.

Yj= A(%(s) i <s <t +A) (2)

Multiple exposures for the same individual introduce
dependence structures. A simple approach is to restrict
analysis to first exposures within non-overlapping win-
dows or to define rules that censor later exposures for
modeling purposes. An alternative is to model each ex-
posure as conditionally independent given the history,
acknowledging that this is an approximation when dy-
namic feedback is present. In either case, the customer
360 representation must retain sufficient granularity so
that the selection and censoring rules can be reconstructed
and audited. [15]

Feature engineering within this architecture includes
counts of visits and transactions, recency metrics, category-
and brand-level affinities, price sensitivity indicators de-
rived from response to historical promotions, and signals
extracted from session paths. For causal applications,
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the key consideration is that these features summarize
information that plausibly influenced treatment assign-
ment and future outcomes without encoding future re-
sponses. To maintain consistency between offline train-
ing and online deployment, features are implemented in
a feature store abstraction so that both environments
invoke the same transformations with respect to event
time and time zones.

Cross-channel effects complicate design [16]. A sin-
gle individual may receive a sequence of emails, see per-
sonalized banners, and interact with recommendations
in the mobile app. Treatments defined at an exposure
unit should capture the relevant competing or comple-
mentary interventions in a way that approximates the
environment seen by the decisioning system. For exam-
ple, exposure units corresponding to email sends may
include as covariates the recent onsite treatment history,
while onsite recommendation exposures may include re-
cent promotional communications. This coupling allows
the estimation machinery to condition on observable
factors that influence both assignment and outcomes,
which is essential when some treatments are determinis-
tic functions of past behavior. [17]

3. End-to-End System Integration and Model
Lifecycle Management

Deploying causal uplift models on integrated customer
360 data requires that statistical methodology, data ar-
chitecture, and software infrastructure form a coherent
pipeline from logging through decisioning. The central
objective is not only to obtain estimates of heteroge-
neous treatment effects but to ensure that these esti-
mates are reproducible, interpretable under stable as-
sumptions, and traceable to the operational environment
in which decisions are made. This section develops an
end-to-end perspective on how data flows, model arti-
facts, and policy configurations can be organized across
their lifecycle, starting from raw behavioral streams and
extending to production services that assign treatments
in real time. The discussion emphasizes deterministic
feature definitions, explicit representations of propensi-
ties and exploration, isolation between training and serv-
ing logic, and mechanisms for rolling updates and roll-
back [18]. The intent is to outline a structure in which
causal uplift modeling is embedded as a controlled sub-
system of the broader personalization stack rather than
an ad hoc layer added on top of predictive scoring en-
gines.

The lifecycle begins with event ingestion and normal-
ization. Web and mobile clients, transactional databases,
and messaging systems emit events that are captured
in append-only logs with timestamps, identifiers, and
minimal contextual attributes. Identity resolution maps
these identifiers into stable customer keys under deter-
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ministic rules that can be versioned; every resolution
decision is stored along with the rule configuration that
produced it, enabling reconstruction of historical keys
when rules evolve. Exposure definitions for treatments,
such as a promotional impression or eligibility for a rec-
ommendation module, are generated by applying consis-
tent predicates on these logs [19]. Crucially, each ex-
posure record captures not only whether the customer
was ultimately shown a treatment but also whether they
were eligible and whether randomization or policy logic
governed assignment. The resulting exposure table is
the anchor for causal analysis, connecting pre-exposure
features and post-exposure outcomes while retaining meta-
data about assignment mechanisms. To preserve consis-
tency, this table is produced by a pipeline that is im-
mutable over a given analysis window and updated via
explicit version increments rather than silent modifica-
tions.

Feature computation is managed via a feature store
abstraction that enforces temporal correctness and cross-
environment parity [20]. For each feature, a definition
specifies its input events, aggregation logic, and time in-
dexing relative to an exposure timestamp. The same
code paths, with identical parameterization, are used in
offline training jobs and in online scoring services, ensur-
ing that any uplift model relies on consistent numerical
representations. When backfilling historical exposures
for training, the feature store reconstructs the feature
values as of the exposure time using only events with
earlier timestamps. In streaming contexts, incremen-
tally maintained aggregates approximate the same defi-
nitions [21]. Discrepancies between batch and streaming
implementations are tracked by periodic reconciliations
on overlapping time windows, and deviations beyond tol-
erance thresholds trigger investigation. This alignment
is foundational because any divergence between train-
ing and serving distributions can introduce systematic
biases into estimated treatment effects and invalidate
offline policy evaluation that assumes stable mapping
from raw logs to model inputs.

The model training stage consumes exposure-level
datasets with linked features, treatments, outcomes, and,
where applicable, known propensities. Training pipelines
are expressed as declarative graphs that separate nui-
sance estimation from effect learning [22]. One subset
of components fits models for é(x) and [, (x) using cross-
validation folds that respect temporal ordering, while
another constructs orthogonal pseudo-outcomes for up-
lift learning. To keep expressions compact and facilitate
inspection, the key transformation for each exposure can
be summarized as

¥ = (X) = fo(X) +w(Y — ar (X)), (3)
where w is a folded function of é(X) and 7 with trun-
cation to control variance. The uplift learner fits £(x) to
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approximate E(y | X = x) using tree ensembles or other
flexible models. Every training run logs configurations,
random seeds, data intervals, model hyperparameters,
and transformation versions so that any deployed arti-
fact is exactly reproducible. Instead of overwriting mod-
els in place, each candidate is stored as a versioned ob-
ject with its own metadata and evaluation reports. The
lineage from raw logs through feature generations and
nuisance models to final uplift estimators is maintained
in a registry accessible for audits. [23]

Policy derivation operates on the outputs of uplift
models under explicit constraints. Given an estimated
effect 7(x) and cost c¢(x), a parametric policy class is
instantiated, for example threshold rules of the form
me(x) = 1{%(x)/c(x) > «} for an adjustable parameter
k. Offline evaluation procedures, using randomized or
exploration logs, estimate the value of each candidate my
together with uncertainty bands. Conceptually, the op-
timization searches over k¥ to find a configuration that
respects budget constraints and yields acceptable risk
characteristics. This step can be framed as a constrained
empirical risk minimization problem in which the empir-
ical objective approximates expected incremental out-
come while penalties encode variance, fairness metrics,
or operational cost. For instance, a conservative calibra-
tion adjusts kK so that the lower bound of an estimated
interval for incremental value remains non-negative [24].
Policies selected under this process are exported as ex-
plicit parameter sets bound to a particular model version
and accompanied by an evaluation dossier.

The online decisioning service is implemented as a
stateless component that, for each incoming request, as-
sembles a context from the feature store, scores uplift
using the bound model, and applies the associated pol-
icy configuration along with exploration and guardrail
logic. To ensure traceability, every decision yields a com-
pact log record that includes a decision identifier, hashed
features, model version, policy parameters, propensity
of the chosen action under the active mixture of tar-
geting and exploration rules, and treatment outcome
when available. Exploration is implemented as a con-
trolled randomization overlay, for example by assigning
a small fraction of traffic to alternative actions with
pre-specified probabilities that are logged precisely [25].
This preserves overlap for future off-policy evaluation
without destabilizing operational metrics. The decision-
ing service also enforces eligibility and frequency caps,
ensuring that uplift-based recommendations do not vio-
late channel limits or customer-level saturation rules.

Model governance requires structured procedures for
promotion, rollback, and retirement. Before a new up-
liftt model and its derived policy are rolled out beyond a
small experimental cohort, they are subject to checks for
data leakage, degradation in calibration, and sensitivity
to weight truncation choices [26]. A shadow deployment

Digital Retail Platforms — 6/15

pattern can be used where the new model scores traffic in
parallel without influencing decisions, allowing compari-
son of recommended actions, predicted effects, and real-
ized outcomes with the incumbent system. If observed
discrepancies fall within predetermined tolerance inter-
vals and no systematic adverse patterns emerge across
key segments, the policy may be incrementally ramped.
At each ramp step, logging and monitoring verify that
empirical treatment rates, budget consumption, and out-
come distributions align with projected values. Rollback
is pre-configured as a revert to a prior stable model and
policy version without altering downstream schemas, en-
abling rapid mitigation of unforeseen behavior. [27]

An integrated monitoring layer spans technical and
causal diagnostics. On the technical side, monitors track
latencies, error rates, feature availability, and consis-
tency between online and offline feature distributions.
On the causal side, monitors estimate realized incre-
mental effects in regions where randomized or explo-
ration data is available, examine uplift calibration across
deciles of predicted effects, and quantify changes in propen-
sity distributions indicating loss of overlap. For example,
if the live policy yields nearly deterministic treatment de-
cisions for a large portion of the population, leading to
propensities that concentrate near zero or one, alerts can
propose increasing exploration or relaxing thresholds in
selected regions of the feature space. These operations
are framed as adjustments to preserve evaluability rather
than as ad hoc corrections to performance metrics. [28]

Fairness, compliance, and privacy concerns are in-
tegrated into each lifecycle stage instead of treated as
afterthoughts. During feature design, attributes with
direct or strong proxy relationships to protected char-
acteristics are identified, and their roles in treatment
decisions are bounded or excluded according to appli-
cable policy. During model training, group-based sum-
maries of estimated uplift and recommended treatment
rates are computed, and large disparities are flagged for
review. At deployment, per-group monitoring uses the
logged propensities and outcomes to estimate realized
incremental effects with confidence intervals, while ac-
knowledging that smaller groups may yield higher uncer-
tainty [29]. Throughout, privacy controls limit exposure
of raw identifiers by relying on hashed or tokenized repre-
sentations and by enforcing strict access policies around
joining sensitive datasets. These measures are aligned
with the requirement that causal uplift systems operate
in a transparent and accountable manner, where deci-
sion logic can be inspected without revealing individual-
level details beyond what is necessary.

Lifecycle management also addresses nonstationarity
in customer behavior and platform operations. Regular
retraining schedules are defined, but their triggering is
conditioned on observed drift in feature distributions,
outcome processes, or calibration [30]. Instead of re-
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training on a fixed cadence without regard to stability,
diagnostics determine when the current uplift model de-
viates from recent data beyond acceptable ranges. When
retraining is initiated, historical windows are selected
to balance recency with sample size, and exploration
data is incorporated explicitly to stabilize propensity
estimates. Competing model candidates can be gener-
ated under alternative feature subsets or regularization
strengths to assess robustness. Model selection criteria
consider not only point estimates of policy value but also
variance, fairness indicators, and sensitivity to choices
in the treatment of extreme weights and outliers [31].
Accepted models become new versions in the registry;
unselected models remain as documented experiments,
providing a record of design space exploration.

Finally, the integration of uplift modeling into the
broader personalization ecosystem benefits from clear
separation of concerns between effect estimation and
content generation. The uplift system concerns itself
with estimating which customer-exposure pairs are more
likely to exhibit incremental response to classes of inter-
ventions, while other components of the platform deter-
mine concrete creative, ranking, or messaging variants.
This separation permits the reuse of effect estimators
across multiple campaigns of similar type and simpli-
fies validation, as the causal layer focuses on relative
impact of being treated versus not treated within de-
fined intervention categories [32]. Over time, this mod-
ular structure can extend to multi-action settings where
treatments correspond to families of interventions, with
uplift models producing vector-valued effect estimates
and policies selecting among them under resource con-
straints. Throughout, the lifecycle framework aims to
maintain a stable mapping from assumptions and algo-
rithms to observable behavior in production, making it
possible to interpret observed outcomes in light of ex-
plicit causal reasoning rather than opaque optimization
dynamics.

4. Causal Identification in Multi-Channel
Retail Environments

The potential outcomes framework provides a formal
language to reason about the causal effects of treat-
ments defined over the customer 360 data. For binary
treatment at an exposure unit, define ¥;;(1) and ¥;;(0)
as the potential outcomes under treatment and control.
The observed outcome satisfies the consistency relation
Y;j = T;;Y;;(1) + (1 — T;;)Y;;(0). The conditional average
treatment effect given features X;; = x is

t(x) = E{Y;(1) = ¥;5(0) | Xij = x}. (4)

Identification of 7(x) requires conditions that connect

observed data to these potential outcomes [33]. When
treatments are assigned through randomized experiments,
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the assignment mechanism ensures that T;; is indepen-
dent of (Y;;(1),Y;;(0)) conditional on design variables, of-
ten even unconditionally. In this setting, unbiased es-
timation is straightforward, and heterogeneity can be
explored by conditioning on X;; without invoking strong
structural assumptions. However, many operational de-
cisions in retail systems result from algorithms or rules
driven by features of the customer and context, yielding
observational data where treatment is not random.

A standard assumption for identification in obser-
vational settings is conditional exchangeability, also de-
scribed as unconfoundedness, which states that the po-
tential outcomes are independent of treatment given fea-
tures. Formally,

(¥ij(1),Y;(0)) LL T35 | Xij. (5)
Combined with positivity, which requires that for
all x in the support of X;; the propensity to treat satis-
fies 0 < e(x) < 1, these conditions permit identification
of 7(x) based on outcome regression, inverse probabil-
ity weighting, or doubly robust estimators. In multi-
channel personalization, verifying these conditions is chal-
lenging, as assignment mechanisms may depend on un-
observed variables, latent preferences, or internal opti-
mization states that are not captured in X;;.

Instrumental variables and natural experiments can
support identification in specific contexts [34]. For ex-
ample, randomized subject lines or layout variations can
serve as instruments that shift treatment probability
without directly affecting revenue beyond the mediated
effect through engagement. Similarly, logistic or inven-
tory constraints that exogenously suppress some promo-
tions may generate variation that is plausibly as good as
random for certain segments. An instrument Z;; must
satisfy relevance (affecting treatment) and exclusion (af-
fecting outcome only through treatment); under these
conditions, local average treatment effects can be re-
covered in the subpopulation whose treatment status
responds to the instrument. These effects are local in
nature and must be interpreted relative to the inducing
mechanism.

Interference is a structural concern in retail environ-
ments [35]. One customer’s treatment can influence an-
other’s experience through shared inventory, social in-
fluence, or platform-level constraints. Partial interfer-
ence assumptions, where interference is confined within
pre-defined groups such as region or campaign cohort,
are more realistic than global independence. Under par-
tial interference, potential outcomes are indexed by both
own treatment and group-level treatment pattern, com-
plicating identification and estimation but allowing for
structured models when group definitions align with sys-
tem architecture.

Temporal dynamics pose additional identification is-
sues [36]. The outcome for one exposure can influence
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future treatment through updating of personalization
models or eligibility thresholds, leading to feedback loops.
In such cases, classical single-stage causal estimands may
not capture long-run consequences of policies. Sequen-
tial causal inference frameworks define potential out-
come trajectories under dynamic treatment regimes. While
full estimation of these regimes can be complex, in many
retail use cases it is still informative to define interme-
diate estimands, such as the effect of a treatment on
outcomes within a limited horizon, under the assump-
tion that subsequent treatments follow observed policies.
37]

Throughout, the framework treats identification claims
as conditional on documented assignment rules, feature
sets, and interference assumptions. The goal is to delin-
eate regimes in which uplift estimates can be interpreted
causally with reasonable robustness and regimes where
estimates remain associative and should be used with
caution in policy learning.

5. Heterogeneous Treatment Effect
Estimation and Uplift Modeling

Once identification conditions are specified, estimation
of heterogeneous treatment effects proceeds by combin-
ing flexible predictive models with constructions that
separate outcome and propensity components. Define
the propensity score e(x) =P(7;; =1 | X;; = x) and the
outcome regressions  (x) =E(Y;; | X;j =x,T;; =t) for r €
{0,1}. Under unconfoundedness and positivity, the con-
ditional effect T(x) can be expressed in multiple equiv-
alent forms. Doubly robust estimators exploit these
equivalences, providing consistency if either the propen-
sity or outcome model is correctly specified. [38]

For each observation, construct residuals and weights
as

rij = Yij — Hr; (Xij), Y

Ly  1-T;
e(X,-') 1 —e(X,-j) ' (7)

An orthogonalized pseudo-outcome for learning 7(x)

Wl'j =
is

Vij = i (Xij) — Ho(Xij) + wijrij. (8)

Regressing y;; on X;; using a flexible learner yields

an estimate of 7(x) that is less sensitive to small errors in

the nuisance functions e and ;. Cross-fitting, where nui-

sance models are trained on folds disjoint from the fold

used to fit the final regressor for 7(x), further reduces
overfitting-induced bias.

Common meta-learners implement alternative decom-
positions [39]. In the T-learner, separate models approx-
imate y; and yy, and uplift is obtained by subtraction; in
the S-learner, a single model approximates E(Y;; | X;;, Tj;),
and uplift is the difference in predictions at 7;; = 1 and
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Tij = 0. X- and R-learners construct individual-level
effect estimates by re-weighting residualized outcomes
with propensity scores. For large retail datasets, tree-
based ensembles and gradient boosting models are often
used as base learners due to their ability to capture non-
linearities and interactions without strong parametric
assumptions.

An uplift tree model partitions the feature space
into regions where the difference between treated and
control outcomes is relatively homogeneous. For a can-
didate split, a splitting criterion evaluates the gain in
estimated uplift heterogeneity [40]. Honest variants re-
serve part of the data for evaluating treatment effects in
leaves to mitigate adaptive bias. While such models can
be interpretable at small depth, deeper trees trade in-
terpretability for fit. Hybrid approaches combine global
models with localized diagnostic trees to describe uplift
patterns.

Regularization practices recognize that in many fea-
ture dimensions, treatment effect heterogeneity may be
limited [41]. Penalized regressions or sparsity-inducing
priors on effect modifiers enforce parsimony. A simple
linear heterogeneous effect model decomposes the out-
come into a baseline and an interaction with treatment
as

Y=o Xij+ T B Xij+ &, (9)

which implies 7(x) = BTx. Suitable penalties on f3

encourage the model to identify a limited set of features
that drive heterogeneity.

Representation learning can be used to compress high-
dimensional behavioral traces into embeddings that serve
as inputs for uplift models [42]. When such embeddings
are learned without using post-treatment outcomes from
the target intervention, they can capture stable patterns
while preserving the validity of subsequent causal esti-
mation. Nevertheless, embeddings can introduce opac-
ity, and their training procedures must be aligned with
identification assumptions to avoid inadvertently condi-
tioning on post-treatment variables.

Model selection for uplift focuses on predictive perfor-
mance with respect to treatment effect ranking and cal-
ibration rather than only on outcome prediction. Cross-
validation folds aligned with time help assess temporal
stability [43]. The resulting uplift estimates form the
basis for policy learning and must be accompanied by
diagnostics on variance, overlap, and sensitivity to nui-
sance specifications.

6. Policy Learning, Budget-Constrained
Targeting, and Sequential Decisions

The primary operational use of uplift estimates is to
guide treatment assignment policies that respect resource
and constraint structures. Let a policy be a function
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Estimator Key Components

Robustness Property

Example Formula

Outcome Regression
Inverse Propensity
Doubly Robust
Cross-Fitted

W (x) models
e(x) scores
W (x),e(x) both
Fold-split estimation

Consistent if y, correct
Consistent if e correct
Consistent if either correct
Reduces overfitting bias

£00) = fu (9) — o)
w;;Y;; weighting
Vij = My — Ho + Wijrij
Orthogonal learners

Table 7. Heterogeneous treatment effect estimation strategies.

Meta-Learner Structure

Estimation Idea

Notes

T-Learner Two separate U, models
S-Learner Single model with T as feature
X-Learner Residualized outcomes
R-Learner Orthogonal loss

Predict, then subtract
Difference in predictions
Weighted re-estimation
Regularized effect fitting

Simple, may ignore imbalance
Compact, may underfit effect
Low variance in large data
Efficient and general

Table 8. Common meta-learners for uplift modeling.

m(x) € {0,1} indicating whether to treat an exposure
with features x. Under a single-period static view and
known conditional effect 7(x), an unconstrained value-
maximizing policy would treat if and only if 7(x) > 0. In
practice, treatments carry heterogeneous costs and are
subject to budgets, frequency caps, or inventory limits
[44]. Let c¢(x) denote the cost of treating a unit with
features x, and let the decision-maker be constrained by
an expected total cost not exceeding a budget B.

The optimization problem can be written as

max E{z(X)7(X)} (10)

subject to

E{n(X)c(X)} <B. (11)
Introducing a Lagrange multiplier A > 0 yields an
unconstrained objective [45]

L(%) = E{x(X)(x(X) = Ae(X))}, (12)
which is maximized by treating whenever 7(x) —Ac(x) >
0. The multiplier A is adjusted so that the induced treat-
ment rate satisfies the budget at equilibrium. In empir-
ical implementations, this results in ranking exposures
by estimated uplift per unit cost and selecting the top
fraction consistent with available resources.

When operational constraints include maximum ex-
posure rates per user or per segment, policies must incor-
porate these caps explicitly [46]. For example, a recency-
based cap might prohibit further promotional emails to
a customer above a given recent count. Policies can then
be defined in terms of both X;; and state variables sum-
marizing prior treatments. Estimation remains based on
exposure-level data, but policy implementation enforces
caps in real time, which modifies future logged propen-
sities and must be captured in evaluation frameworks.

Sequential decision processes arise when the retailer
repeatedly interacts with customers and the impact of
a treatment depends on past treatment history. In such
settings, static uplift policies may overlook long-term

trade-offs, such as habituation to discounts or evolving
category interests. A dynamic framework specifies a
state vector S; summarizing the history at time z, an
action A, representing treatment choice, and a reward
R; representing immediate outcome. A stochastic policy
7(A; | S;) maps states to action distributions. The ob-
jective is to maximize the expected discounted sum of
rewards. [47]

VT = E" [Z q/R,}, (13)
1=0

with discount factor y € (0,1). Estimation of optimal
dynamic policies from logged bandit or reinforcement
learning data is complex and requires careful control
of extrapolation. In practice, many retail implementa-
tions adopt restricted classes of policies that adjust uplift
thresholds based on coarse state summaries, to preserve
interpretability and facilitate evaluation.

Policy learning in the uplift context can be approached
through direct optimization of estimators for V”. Offline
learning algorithms construct candidate policies and eval-
uate them using inverse propensity weighting or doubly
robust techniques on historical data [48]. To maintain
compatibility with underlying identification assumptions,
policies are constrained to depend only on observed pre-
treatment features and possibly known design variables.
The search space for policies is often parameterized by
thresholds or scores to reduce variance.

7. Evaluation, Monitoring, and Governance in
Production Systems

Reliable deployment of causal uplift policies depends
on evaluation protocols that quantify expected perfor-
mance, detect deviations, and provide transparency. Of-
fline evaluation uses logged data to approximate the
value of candidate policies before deployment [49]. In
randomized experiment settings, where treatment prob-
abilities are known, inverse probability weighting can
reweight observed outcomes to emulate counterfactual
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Approach Mechanism Advantage Limitation
Uplift Trees Partition by treatment difference Interpretability Bias in adaptive splits
Honest Trees Separate fit/eval sets Reduced overfitting Data inefficiency
Regularized Linear Sparse B for heterogeneity Parsimony Linear assumption

Representation Learning Embedding features

Capture nonlinearities Potential opacity

Table 9. Modeling techniques for heterogeneous treatment effects.

Policy Type Objective Decision Rule Constraint
Unconstrained Maximize uplift Treat if 7(x) >0 None
Budget-Constrained ~Maximize uplift per cost T(x)/c(x) > K E{mc} <B

Frequency-Capped
Sequential

Respect exposure limits
Long-term optimization

Enforce recency bounds
m(A;|S;) stochastic

User-level caps
Markov constraints

Table 10. Policy learning and operational targeting frameworks.

policies that differ from the logging policy but rely on
the same available features.

Let p;; denote the propensity with which treatment
T;; was assigned in the logging environment, and let a
candidate policy be m(X;;). A basic importance-weighted
estimator of the policy value is

”_ lZI{Ti,i:”(Xij)}Yi" (14)

Vv
N ij Pij
where the sum is over exposure units. To reduce vari-
ance and incorporate outcome modeling, doubly robust
estimators augment this with predictions under each ac-
tion [50]. Let fI;(x) be estimated expected outcomes; a
doubly robust estimator is

.\ 1
Vpr = Nzhm (15)
i

where

hij = Ry (Xij) + HT”}):(X”)}{K]' — iz, (Xij) }-
(16)

This construction yields consistent estimates when
either the propensity or outcome model is correct. Confi-
dence intervals can be obtained using influence function
approximations or bootstrap over exposure units with
time-aware resampling.

Ranking-based metrics such as uplift curves and Qini
indices assess how well uplift models order individuals
by expected incremental effect. To construct an uplift
curve, exposures are sorted by predicted Z(X;;), and for
each prefix proportion, the difference in observed out-
comes between treated and control units is computed.
The area between this curve and a baseline represent-
ing random targeting summarizes discriminatory power
[61]. While such metrics are informative, they should be
interpreted alongside budget and constraint-aware eval-
uations that reflect actual operational usage.

Monitoring in production addresses distributional shift,
overlap degradation, and calibration drift. Distributional

shift is assessed by comparing the distribution of fea-
tures, propensities, and outcomes between the training
period and recent serving periods using discrepancy mea-
sures. Overlap degradation occurs when the deployed
policy becomes more deterministic and concentrates treat-
ment on a narrow region of the feature space, reducing
the support available for learning about alternative poli-
cies [52]. To counter this, exploration is maintained by
randomizing treatment for a small subset of traffic, log-
ging propensities, and integrating exploration data into
future uplift estimation.

Calibration diagnostics compare predicted uplift to
realized differences in held-out or recent experimental co-
horts. Features are binned according to predicted uplift,
and within each bin, the empirical treatment-control dif-
ference is compared to the average prediction. System-
atic deviations suggest miscalibration or concept drift
[63]. When drift is detected, retraining and policy reeval-
uation are triggered under predefined governance rules.

Governance structures define how models are doc-
umented, approved, and audited. Documentation in-
cludes a description of the data sources, inclusion and ex-
clusion criteria, exposure definitions, outcome windows,
identification assumptions, estimation methods, hyper-
parameters, and limitations. Logging infrastructure records
each decision with hashed identifiers for features, the
predicted uplift, the chosen action, and the propensity
of that action under the active policy and any explo-
ration scheme [54]. These logs support post-hoc analy-
sis of unexpected outcomes, reconstruction of exposure
histories, and tracing of aggregate patterns to specific
model updates.

Fairness and compliance considerations form part of
governance. Group-level analyses examine whether treat-
ments, benefits, and burdens are distributed unevenly
across protected or sensitive segments. While uplift opti-
mization inherently targets individuals with higher esti-
mated incremental response, monitoring is used to deter-
mine whether this optimization inadvertently produces
systematic exclusion or concentration patterns that war-
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Evaluation Method  Estimator

Requirement

Purpose

Inverse Propensity Vv

Doubly Robust Vor
Uplift Curve Qini index
Bootstrap CI Resampling

Known p;;
Either p or y; correct
Treatment-control split
Time-aware folds

Offline counterfactual eval
Lower variance, consistency
Ranking performance
Uncertainty quantification

Table 11. Evaluation and validation metrics for uplift models.

Governance Aspect Focus Implementation Outcome
Logging Decision traceability Hashed IDs, propensities Auditability
Monitoring Drift detection Feature and outcome shift Stability alerts
Fairness Group-level analysis  Parity in uplift and exposure Compliance tracking
Documentation Transparency Model/data registry Reproducible records

Table 12. Governance and monitoring practices for causal uplift systems.

rant reassessment [55]. Corrective actions can include
imposing constraints on policy parameters or revising
feature sets.

8. Extensions: Dynamic Effects, Interference,
and Robustness

The static uplift framework can be extended to address
dynamic treatment effects, interactions among customers,
and robustness to misspecification. Dynamic effects arise
when the impact of an intervention persists or evolves
over time, influencing subsequent purchases, engagement,
and price sensitivity. To formalize this, define poten-
tial outcome trajectories {Yi;(@ )}, where @ denotes a
sequence of actions up to time . A dynamic regime
specifies actions as functions of evolving histories, and
the evaluation objective becomes an expectation over
trajectories under such regimes.

In practical terms, retailers often consider limited-
horizon effects where interventions are not expected to
substantially alter behavior beyond a finite window [56].
Nevertheless, discount habituation or overexposure to
promotions can shift baselines. Sequential causal esti-
mators such as marginal structural models reweight ob-
served sequences to emulate alternative regimes under
assumptions about treatment assignment and confound-
ing. The stabilized weights depend on probabilities of
observed actions conditional on past histories; truncated
weights are used to manage variance [57].

Interference is inherent in settings with shared ca-
pacity, social contagion, or recommendation feedback
[568]. One abstraction partitions customers into clusters
where interference is assumed to operate locally. Po-
tential outcomes Y;;(r,z) may depend on own treatment
t and a summary z of treatments within the cluster.
Identification then requires assumptions on how cluster-
level treatment is assigned and how it affects outcomes.
In promotion scenarios with inventory constraints, the
availability of an item may be a function of total treated
demand; policies must consider that encouraging addi-

tional demand could induce stock-outs that affect un-
treated customers.

Robustness analysis addresses uncertainty in propen-
sity estimates, outcome models, and structural assump-
tions [59]. Sensitivity to unobserved confounding can be
expressed by bounding how much the odds of treatment
might differ between units with equal observed features
but different potential outcomes. Given such a bound,
one can derive ranges for treatment effect estimates con-
sistent with the observed data and the assumed degree
of hidden bias. These ranges can inform whether con-
clusions used for targeting remain stable under plausible
deviations.

Consider a simple bound on propensity distortion
[60]. Let é(x) be the estimated propensity and assume
the true propensity satisfies

e(x é(x

log 0 —(ezx) =log 1 —(ézx) +6(x), (17)

where J(x) is unknown but constrained in magnitude.

By varying 0(x) within a specified range, one obtains

perturbed propensities and recomputed effect estimates,

forming sensitivity intervals. This type of analysis can

be implemented segment-wise to detect regions where
conclusions are fragile.

Robust policy learning incorporates such uncertain-
ties directly into optimization [61]. Instead of maxi-
mizing a point estimate of expected uplift, the decision-
maker can optimize a conservative criterion, such as the
worst-case value over a set of plausible models. Let .#
be a neighborhood of models for 7(x) and e(x). A robust
objective is

(18)

where 7, denotes the treatment effect function un-
der model m. While direct solution can be complex,
approximate methods based on penalizing variance and
incorporating safety margins in thresholds are tractable.
Another dimension of robustness concerns numerical
and implementation stability [62]. Differences between

in E X X
mgx ’1111;12[ AT (X)Tu(X)},
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training and serving feature computations, silent failures
in identity resolution, and lagged ingestion of events can
all induce discrepancies. Monitoring for such discrepan-
cies includes cross-checking distributions of key features
across pipelines, verifying that exposure definitions re-
main consistent over time, and validating that propensi-
ties implied by the live policy match expectations.
Finally, interpretability contributes to robustness by
enabling practitioners to identify implausible patterns.
Even when primary models are complex, simplified sum-
maries of uplift as functions of a small number of fea-
tures can reveal whether the learned structure aligns
with domain understanding [63]. If treatment effects
appear to depend strongly on proxies for attributes that

are operationally or ethically sensitive, additional scrutiny

is warranted, and feature sets or constraints can be ad-
justed accordingly.

9. Conclusion

This paper has presented a detailed and neutral account
of how causal inference and uplift modeling can be inte-
grated with customer 360 data to inform targeted per-
sonalization strategies in B2C digital retail platforms.
The proposed perspective starts from explicit definitions
of exposure units, temporal alignment of features and
outcomes, and identity resolution constraints, recogniz-
ing that these infrastructural elements shape the validity
of any downstream causal claim. Within this structured
data environment, potential outcomes notation and as-
sociated identification assumptions provide a basis for
interpreting uplift estimates as approximations to het-
erogeneous treatment effects rather than purely associa-
tive patterns. [64]

Estimation strategies built on outcome regression,
propensity modeling, doubly robust scores, and orthogo-
nalization enable flexible learners to be used while main-
taining some protection against misspecification. These
strategies produce individualized effect estimates that
can be mapped into policies respecting budget, capacity,
and frequency constraints. Simple ranking rules based
on uplift per unit cost emerge naturally from constrained
optimization formulations, with dynamic extensions al-
lowing limited forms of sequential adaptation when war-
ranted by data and operational requirements.

Evaluation and governance mechanisms are central
to the framework [65]. Off-policy estimators grounded in
logged propensities, uplift ranking diagnostics, calibra-
tion checks, drift detection, and continuous experimen-
tation contribute to a controlled environment in which
targeting rules can be updated with traceable justifica-
tions. Fairness, privacy, and interpretability consider-
ations are incorporated not as external additions but
as constraints and monitoring dimensions that interact
with model design and deployment.

The discussion acknowledges the limitations imposed
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by unobserved confounding, interference, dynamic feed-
back, and finite logging support. Rather than asserting
universal solutions, it outlines how sensitivity analysis
and robust optimization concepts can be applied to char-
acterize the range of plausible effects and to construct
policies that are conservative with respect to modeling
uncertainty. The resulting view is one where causal up-
lift modeling is treated as an integrated systems prob-
lem, connecting data architecture, identification, estima-
tion, policy learning, and governance, and where con-
clusions are conditioned on transparent and testable as-
sumptions aligned with the realities of large-scale digital
retail platforms. [66]
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