Orient Academies

This article is published under an open-access license by Orient Academies. All content is distributed under the
Creative Commons Attribution (CC BY) License, which allows unrestricted use, distribution, and reproduction in
any medium, provided that the original author and source are properly credited.

A Learned Bloom Filter Cascade for High-Selectivity Lookups

in Distributed Key—Value Stores with Tight Error Bounds

Adel Benamar!, Karim Selmani?

Abstract

Two-sided e-commerce platforms increasingly intermediate trade by selecting which sellers are shown to which
buyers, often through search, recommendation, and sponsored ranking systems. These systems can generate
systematically different outcomes across seller groups even when listings are similar in measured quality or price,
raising questions about the mechanisms that produce disparate matching and about the scope of discrimination
in algorithmically mediated markets. This paper develops a formal analysis of disparate outcomes in buyer—seller
matching on a platform that controls exposure and information while buyers and sellers respond strategically.
The framework accommodates taste-based discrimination in buyer preferences, statistical discrimination
arising from heterogeneous beliefs and noisy signals about seller quality, and algorithmic discrimination that
emerges from optimization under partial observability, feedback, and constraints. The model yields equilibrium
conditions linking exposure, clicks, conversions, seller pricing, and platform objective functions. It also provides
a decomposition of disparity into components attributable to preference heterogeneity, information and
inference, and platform policy. The analysis highlights how subtle differences in priors, measurement error, and
exploration rules can produce persistent gaps in exposure and sales, including regimes where outcomes diverge
despite symmetric underlying quality distributions. The paper also characterizes design interventions based
on constrained optimization and counterfactual parity concepts, clarifying when they can reduce disparities

without inducing large efficiency losses, and when they primarily shift rents between market sides.

I Université d’El Tarf, Department of Computer Science, Avenue Colonel Amirouche 27, El Tarf 36000, Algeria,
2 Université de Nadma, Department of Computer Science, Route Sidi Ahmed 19, Nadma 45000, Algeria

Contents

1

1 Introduction 1

2 System Model and Motivation 4

3 Cascade Architecture and Training 6

4 Tight Error Bounds and Resource Optimization 8

5 Distributed Integration and Operational Considerations
10

6 Conclusion 13

References 13

1. Introduction

A distributed key—value store answers queries of the
form Get(k) by routing a key k to a responsible shard,
consulting an in-memory index or cache, and potentially
accessing a deeper storage tier. For many production
workloads, the rate of negative lookups is high: clients

probe for keys that do not exist because of cache warm-
ing, speculative reads, idempotent write patterns that
first check existence, denial-of-service mitigation checks,
or coordination protocols that test membership before
attempting a mutation [1]. When most queries are nega-
tive, even an efficient shard can be dominated by wasted
work, because the system must still parse requests, per-
form routing, consult local structures, and often touch
storage metadata to establish non-membership. At scale,
the aggregate cost of negatives appears as CPU utiliza-
tion, memory bandwidth, storage I/O amplification, and
tail latency, and it constrains the attainable throughput
for positive queries that actually return values.

Probabilistic set membership filters are widely used
to deflect negative lookups. A Bloom filter compactly
represents a set S and returns either “definitely not in
S” or “possibly in §,” guaranteeing no false negatives
under idealized assumptions and producing false posi-
tives at a tunable rate [2]. In a distributed store, a
Bloom filter is typically attached to each shard or to

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —
2/16

high-selectivity lookups

‘ Q Client ’

Y

%,,,,,

routing + batching

%{

Cascade

40 Learned Bloom
fast reject / accept

A

¥ Hot

populd

Cache
r keys

-

S Storage Engine
memtable + SSTables

‘ &% Frontend

Y A

i= Exact Index
point lookup path

= Directory
key—shard map

%

= Shard
replicated KV- - - - -

Worker

o

hit-rate, drift, errors

{ I Telemetry

|
Bound Targets
FPR <&, FNR~ 0

T

Figure 1. Distributed key—value lookup path where a learned Bloom filter cascade sits on the critical route to eliminate
most negatives quickly while enforcing explicit false-positive constraints.

.) Feature Extract
key hashing / encoding

Y Bloom Filter 1
cheap bit probes

Y

—@

Y

‘ @b Learned Scorer s(k) }/

prob. of membership

cover hard negatives

Y Backup Bloom ’

Y

RO

= Thresholds
71, T> (calibrated)

C =

£ Exact KV Check

final truth

Error Budget
allocate € across stages

Figure 2. Cascade internals: a learned scorer routes keys through a small number of Bloom stages and an exact check, with
calibrated thresholds used to distribute a global false-positive budget across components.

each segment within a shard. A negative query can then
be rejected early without touching deeper tiers, while a
positive filter response triggers the normal lookup. The
trade-off is that a low false-positive probability requires
memory proportional to |S|log(1/e) for a target false-
positive rate €, and that memory competes directly with
cache and index memory that also affect performance.

Learned Bloom filters propose to use a statistical
model f(k) that scores whether k is likely to be in S
based on features derived from k or its associated meta-
data. The model is paired with a backup Bloom filter
that stores the keys the model would otherwise reject,
thereby restoring the no-false-negative guarantee while
potentially reducing total memory [3]. The approach is
attractive in settings where the set of keys has structure
that the model can exploit. However, a production dis-
tributed store imposes additional constraints that com-
plicate the classic learned filter construction. First, keys
are partitioned across shards, and each shard can have
a different key distribution, update rate, and access pat-
tern. Second, the model must be calibrated: the score
distribution for members and non-members must be sta-
ble enough that a chosen threshold delivers the desired
error rate. Third, even if the model is accurate on av-

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

= Shard A
&) LBF cascade

replica set

I

ﬁ Frontend

consistent hashing

= Shard B
&) LBF cascade

replica set

I

= Shard C
40 LBF cascade

replica set

%.
-

3/16

Rebalancing
epoch-safe moves

quorum reads

L] Replication ’

¥ Observability
FPR audits + drift

—

1
‘ &% Config Service

epochs + rollout

Figure 3. Distributed deployment: consistent hashing routes each key to a shard-local learned Bloom cascade, while
configuration epochs support safe rollouts and rebalancing without violating error budgets during transitions.

‘ Global Target ’

Pr[false positive] < €

Empirical Audit
shadow queries 4 canaries

’ ‘ &6 Reporting ‘

per-shard €

Y

T
!
|
|
|

= Budget Allocation
€=¢ty+&+tem

I
E Bound domputation
union / cdmposition
1

—C

@ Certified
tight error cap

Y

[© Calibration } _

score bins & thresholds

A Guardrails

auto tighten 7 on drift

A
1
|
1
|
1
1

]'}’,(T(‘l librate

Figure 4. Tight error accounting: a global false-positive target is partitioned across learned and Bloom stages, then
continuously audited with shadow traffic to detect drift and trigger automatic threshold tightening while preserving

certification.

erage, small errors in the tail of the score distribution
can cause disproportionate increases in false positives
when the target € is extremely small, as is typical for
high-selectivity workloads where even 1073 false posi-
tives may be too high at large scale. Fourth, operational
failures, version skew, and data shift require mechanisms
that preserve bounded behavior when the model devi-
ates from its training assumptions [4].

This paper develops a learned Bloom filter cascade

otherwise be rejected, potentially conditioned on score
ranges or other partitions [5]. An optional exact guard,
implemented as a small deterministic structure or a fi-
nal definitive lookup, enforces correctness policies when
updates or drift threaten the no-false-negative property.
The cascade is built around a bounding framework: rather
than relying on informal error estimates, it derives end-
to-end false-positive and false-negative guarantees by
composing measurable per-stage quantities. The bounds
are tight in the sense that they track the realized accep-

designed for high-selectivity negative lookups in distributed tance regions and do not introduce overly conservative

key—value stores with tight error bounds. The cascade
generalizes the two-stage learned Bloom filter into a se-
quence of stages that progressively allocate additional
memory only to the uncertain portion of the key space.
The first stage is a learned scorer that attempts to accept
likely members with high recall while rejecting likely
non-members. Subsequent stages are compact approx-
imate filters that store the residual members that would

slack when stages are independent only conditionally.

The design objective in a distributed store is not
merely to reduce filter memory, but to minimize total
cost, which includes memory, CPU overhead, network
round trips, and additional backend accesses induced by
false positives. When negative lookups dominate, the
key metric is often the rate at which the system can

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

Key Logs
positives + hard negatives

o

Y

2° Dataset Build
sampling & labeling

model + BFs + &

Y

40 Train + Calibrate

scores, thresholds

shadow 1k:(’)mp‘(mr(:

)

4/16
Y Build Bloom Stages I Monitor
bit arrays, seeds : drift + audits
T
I
I
I
I
|
I
|
! l
\ : !
& Package Artifact : & A/B Gate
I
I

Yy T ~-

Rollout
epoched deploy

/

/

/

S~ /
b WTL“IL{ "
tri

A4
Refresh

gger rebuild

)

& Safety

{ rollback on bound breach

|

Figure 5. Lifecycle of a learned Bloom cascade: logs produce labeled datasets, training yields calibrated thresholds, Bloom
stages are rebuilt from residual sets, and epoch-based rollout is monitored for drift with automatic refresh and rollback

mechanisms.

Table 1. Evaluation datasets for learned Bloom filter cascade experiments.

Dataset Keys (millions) Query keys (millions) Selectivity (%)
WebKV 120 30 0.02
LogStore 80 20 0.05
TimeSeries 50 10 0.01
SocialGraph 150 40 0.03
TIoTEvents 60 15 0.04

reject negatives at the edge of the shard with minimal
work [6]. A learned cascade can help if it reduces the
number of false positives at a given memory budget or if
it achieves a target false-positive budget with less mem-
ory. Yet, for high-selectivity lookups, the false-positive
budget is often extremely strict, and any bound must re-
main valid across shards and over time. This motivates
a cascade that can be audited, monitored, and adjusted
online, while still leveraging learned structure.

The remainder of the paper proceeds as follows. The
system model formalizes distributed lookups and defines
the relevant error metrics under sharding and updates
[7]. The cascade architecture section presents the learned
scorer, the residual filters, and the operational data flow,
emphasizing calibratable thresholds and shard-local de-
ployment. The error analysis section derives tight end-
to-end bounds for false positives and false negatives, and
formulates a memory minimization problem under ex-
plicit constraints. The distributed integration section
addresses updates, consistency, non-stationarity, fault
tolerance, and practical instrumentation, and discusses
evaluation considerations that connect the analysis to
measurable system outcomes.

2. System Model and Motivation

Consider a distributed key—value store that maintains a
dynamic set of keys S; C J# at time ¢, partitioned across
M shards by a routing function p : & — {1,...,M}. A
query arrives with key k and is routed to shard p(k)
[8]. The shard returns a value if k € S; and indicates ab-
sence otherwise. The store may have multiple tiers: an
in-memory cache or memtable, an on-disk index, and a
storage engine. For negative queries, the system ideally
determines k ¢ S; using only fast local operations, avoid-
ing disk and minimizing CPU and network overhead.

A membership filter F attached to a shard is a func-
tion that maps a key to a binary decision. For a classical
Bloom filter, F (k) =0 implies k ¢ S, (no false negatives in
the static idealization) and F (k) = | implies k € S, with
some false-positive probability [9]. In a dynamic store,
updates modify S;, and filters must be rebuilt or up-
dated incrementally. Practical filters may permit tran-
sient false negatives if the filter lags the authoritative set,
which is unacceptable for some applications. Therefore,
a system model must distinguish between algorithmic
error (due to approximation) and staleness error (due
to delayed updates), and it must specify which is being
bounded.

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

5/16

Table 2. Cascade configuration across levels in the proposed structure.

Level Filter type Bits per key Target FPR (%)
1 Learned model only 1.0 5.0
2 Learned plus Bloom 4.0 1.0
3 Bloom filter 6.0 0.1
4 Counting Bloom 8.0 0.01
5 Exact index n.a. 0.00

Table 3. Learned models used to approximate key distributions in the cascade.

Model Features Parameters (thousands) Train time (seconds)
Linear Key hash, position 4 2.1
Two layer MLP Hash, range bucket 32 5.8
Four layer MLP Hash, rank estimate 96 12.4
CNN Bit pattern embedding 140 18.9
Spline model Key quantiles 20 4.5

We focus on the algorithmic errors induced by the
cascade itself, and treat update lag as a separate oper-
ational concern that can be bounded by design choices
such as synchronous filter updates, write-ahead logging
of filter deltas, or an exact guard. In particular, the
cascade will be constructed so that, given a consistent
view of S, at build time, the algorithmic false-negative
probability is either zero (with a backup structure that
stores all rejected members) or explicitly bounded (if an
approximate residual structure is used without a final
exact check) [10]. The false-positive probability is the
key tunable parameter and is targeted to be small.

Let Q denote the query distribution over keys, which
may differ from the empirical distribution of keys in
S;. High-selectivity lookups correspond to regimes in
which Pryglk € §;] is small, often much less than 1%.
Let @ = Pryglk € S;] denote this base rate. The ex-
pected backend load induced by filter responses depends
on both m and the false-positive probability on non-
members. If the filter returns positive on a non-member,
the system performs a full lookup, incurring wasted cost
[11]. If the filter returns negative on a member, the
system violates correctness unless it has a guard path.
Therefore, the goal is to minimize false positives subject
to preserving recall, while also minimizing memory and
compute overhead.

In a sharded system, each shard m maintains its own
set St(m) ={keS; :p(k) =m}. The distribution of keys
and queries can be heterogeneous across shards due to
non-uniform hashing, tenant locality, or temporal cor-
relation. A global model shared across shards may be
suboptimal if it fails to capture shard-specific structure,
yet per-shard models may be too expensive to train and
deploy. The cascade design in this paper supports both
cases by separating a shared scorer from shard-local cal-
ibration and backup structures [12]. Specifically, the

scorer produces a score s = fg(@(k)) where ¢ (k) is a fea-
ture map derived from k and optionally from shard-local
metadata, and 6 are parameters that may be global or
partially shard-specific. The thresholds and backup fil-
ters are shard-local and can be tuned based on shard-
local score distributions.

A key operational constraint in distributed stores is
that filters must be composable with routing and caching.
A common deployment places a filter at the shard front
door, before accessing in-memory indexes, so that neg-
atives are rejected early. Another deployment places
filters per segment or per SSTable, enabling the engine
to skip disk reads [13]. The cascade approach can oper-
ate at either level, but the error bounds differ because a
shard-level filter decides whether to perform any lookup
at all, while a segment-level filter decides whether to
consult a particular segment. High-selectivity lookups
often benefit most from a shard-level rejection path, be-
cause it eliminates the entire lookup pipeline for most
negatives.

The motivation for a cascade, rather than a single
learned filter with one backup Bloom filter, is that high-
selectivity requirements push the false-positive budget
into a tail regime where a single threshold may be in-
efficient. If a learned model separates members from
non-members well in the bulk but overlaps in a small
region, the optimal strategy is to allocate extra memory
to resolve ambiguity only in that region [14]. A cascade
achieves this by partitioning the key space into accep-
tance regions and residual regions. The learned scorer
can accept confidently positive keys, reject confidently
negative keys, and pass the uncertain remainder to a sec-
ond stage. The second stage can be a small Bloom filter
over the uncertain members, potentially with its own
partitioning, and so on. This staged allocation enables
lower total memory for a given end-to-end false-positive

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

6/16

Table 4. False positive and false negative rates compared to classic structures.

Method Space per key (bits) FPR (%) FNR (%)
Classic Bloom filter 10.0 1.00 0.00
Cuckoo filter 9.5 1.10 0.00
Blocked Bloom filter 8.5 1.30 0.00
Learned Bloom filter 6.0 0.40 0.02
Learned cascade (proposed) 5.5 0.10 0.01

Table 5. Single node lookup performance under high selectivity workloads.

Method

Throughput (thousands qps)

P50 latency (us)

Classic Bloom filter
Cuckoo filter

Blocked Bloom filter
Learned Bloom filter
Learned cascade (proposed)

520 145 480
560 132 430
590 120 395
640 110 360
710 96 320

bound, especially when the overlap region is small but
would otherwise dominate the backup filter size.

To reason formally, define Y (k) =I[k € S;] as the mem-
bership label. The scorer outputs s = fo(¢(k)) € R. For
a threshold 7, a simple learned filter would accept if
s > 17 and otherwise consult a backup Bloom filter B
that contains keys in S, with s < 7 [15]. The false pos-
itives arise from non-members with s > 7 and from the
backup Bloom filter false positives among non-members
with s < 7. For extremely small target €, the threshold
T must be high, which increases the number of mem-
bers with s < 7 and thus increases the backup filter size.
A cascade generalizes this by using multiple thresholds
and multiple backups to reduce the backup memory over-
head while maintaining small €.

The system also demands tight bounds. In practice,
a store operator may specify a false-positive budget per
shard, per tenant, or per time window [16]. The bound
must be demonstrably satisfied given measurable quan-
tities, because failure may trigger incorrect routing de-
cisions, unnecessary load, or policy violations. Tight-
ness matters because overly conservative bounds waste
memory and reduce the advantage of learning. There-
fore, the analysis will use measurable score histograms
and explicit filter parameters to compute bounds that
closely match realized performance, and it will include
mechanisms for online recalibration that preserve bound
validity under modest drift.

3. Cascade Architecture and Training

The learned Bloom filter cascade consists of a scorer
stage followed by L residual filter stages. The cascade
takes a key k and returns either reject (definitely not a
member, under the cascade’s correctness policy) or ac-
cept (possibly a member, prompting a full lookup) [17].
The scorer produces a real-valued score s = fo(9(k)).

The score is then compared against a sequence of thresh-
olds 79 > 171 > -+ > 11, where T is the primary accept
threshold and lower thresholds define progressively broader
regions. Intuitively, keys with very high score are ac-
cepted immediately; keys with medium score are checked
against a small approximate filter storing the subset of
members in that score band; keys with low score may
be rejected directly or checked against deeper residual
filters depending on the desired false-negative policy.

A concrete realization that is convenient for analy-
sis is a partition of the score axis into L+ 1 disjoint
intervals [18]. Let Ip = [7p,°0), and for £ € {1,...,L} let
Iy =7, 7-1), and let I = (—oo, 7). The cascade pro-
cesses a key by first determining which interval contains
its score. If s € Iy, the cascade returns accept. If s € I,
for 1 < /¢ <L, the cascade consults a residual filter By
that stores exactly the members in that interval, that is,
Se={keS : fo(¢(k)) € I;}. If By returns positive, the
cascade accepts; otherwise it rejects. For the tail interval
I; 11, the cascade may either reject immediately (trading
a potential false-negative rate if members appear in the
tail) or consult an additional guard structure G that en-
forces no false negatives, such as a final Bloom filter over
all tail members or an exact lookup in a compact index.
In a key—value store that must never miss existing keys,
G is configured so that members in I;) are accepted.
This can be done by storing the tail members in a final
backup filter By or by forcing a definitive lookup for
tail scores.

The architecture supports several design choices that
affect both performance and bounding. If the scorer is
sufficiently accurate that the tail interval contains ex-
tremely few members, then Bri; can be small. If the
scorer is less reliable, the cascade can allocate more in-
tervals so that each residual filter covers a narrower score
band, allowing better tailoring of filter sizes to the local

P99 latency (us)

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

7/16

Table 6. Distributed key value store throughput scaling with shards.

Shard count

Baseline throughput (million qps)

Learned cascade (million gps)

4 1.8
8 3.4
16 6.1
32 11.7
64 21.5

2.2 22.2
4.3 26.5
8.0 31.1
15.9 35.9
30.4 41.4

Table 7. Impact of query selectivity on cascade effectiveness.

Selectivity class

Baseline FPR (%)

Cascade FPR (%) Relative reduction (%)

Very low (0.01) 0.95
Low (0.05) 1.10
Medium (0.10) 1.25
High (0.50) 1.60
Very high (1.00) 2.10

0.10 89.5
0.15 86.4
0.25 80.0
0.60 62.5
1.10 47.6

density of members and non-members [19]. The key prin-
ciple is that the false positives contributed by each inter-
val are weighted by the probability that a non-member
key falls into that interval under the query distribution.
If the query distribution concentrates non-members in
certain regions, the cascade can allocate additional mem-
ory there to reduce false positives most effectively.

Training the scorer fg depends on the available fea-
tures. In many key—value stores, the key itself may be a
hash or an opaque identifier, in which case little struc-
ture is available. However, in many practical deploy-
ments, keys contain prefixes, namespaces, tenant identi-
fiers, or structured encodings [20]. Additionally, shard-
local metadata such as key length, prefix, or creation
time bucket may correlate with membership in the cur-
rent resident set. The feature map @(k) can include
such derived attributes, along with learned embeddings
for categorical components. The scorer can be a linear
model, a gradient-boosted tree, or a compact neural net-
work, but its choice is constrained by latency and the
need for stable calibration. A high-throughput shard
front door often requires microsecond-scale scoring, fa-
voring models that are fast and can be vectorized [21].

The scorer is trained to separate members and non-
members, but the cascade objective is not standard clas-
sification accuracy. The downstream cost of errors is
asymmetric: false negatives may be disallowed, while
false positives incur a backend lookup cost that depends
on the storage tier. Furthermore, the cascade will im-
pose thresholds that operate in the extreme tail of the
non-member score distribution when targeting very small
false-positive rates. Therefore, it is beneficial to train
the scorer with a loss that emphasizes ranking and cali-
bration in the high-score tail. One approach is to train
with a weighted logistic loss where non-member exam-
ples with high predicted scores are weighted more heav-

ily [22]. Another approach is to optimize for an approx-
imation of the area under the precision—recall curve in
the relevant operating region. A practical method is
to train a model to produce a well-calibrated estimate
of Pr[Y = 1] ¢(k)], and then select thresholds by directly
measuring tail probabilities on a held-out calibration set.

Calibration is critical because the cascade uses thresh-
olds to allocate members to residual filters. Even if
the model is not perfectly probabilistic, it must produce
a score whose empirical distributions for members and
non-members are stable enough that the measured quan-
tiles remain meaningful in deployment. Calibration can
be achieved by post-hoc methods such as temperature
scaling or isotonic regression applied to the raw model
outputs, using a calibration dataset that reflects the de-
ployed query distribution as closely as possible [23]. In a
distributed store, the query distribution may be difficult
to sample because non-members are not stored. How-
ever, the system naturally observes non-member queries
during operation, and can log their scores to build an
empirical non-member score distribution. For member
keys, the system can sample from S; or from positive
queries. The calibration process then aligns the score
scale so that thresholds chosen to achieve a desired non-
member tail probability remain stable over time [24].

The cascade thresholds {7/} and filter sizes {my}
(bits) for each residual filter By must be chosen jointly.
A residual Bloom filter that stores ny = |Sy| keys with
my bits and hy hash functions has an approximate false-
positive probability & =~ (1 — e hene/ ””’)hé’ under standard
assumptions. For a fixed m; and ny, the optimal A is ap-
proximately (m;/n;)In2, yielding & = (0.6185)"/" In
practice, implementations may use blocked Bloom fil-
ters or SIMD-friendly variants that slightly alter the
formula, but the dependence on bits per key remains
similar, and the cascade framework can incorporate the

Relative gain (%)

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

8/16

Table 8. Ablation on the number of cascade levels for a fixed memory budget.

Cascade levels Index memory (megabytes) FPR (%) Throughput (thousands gps)

1 420 1.30 540
2 420 0.70 610
3 420 0.35 670
4 420 0.18 700
) 420 0.10 710
Table 9. Resource usage breakdown for different indexing strategies.
Method CPU time per lookup (nanoseconds) Cache miss rate (%) Index memory

Classic Bloom filter
Cuckoo filter

Blocked Bloom filter
Learned Bloom filter
Learned cascade (proposed)

180 7.8
165 7.1
150 6.0
140 5.2
128 4.5

512
48(
43(
36(
34(

precise implementation-specific false-positive curve.

A subtlety arises because the residual filters are not
consulted for all queries, only for those whose score lies
in the corresponding interval. Therefore, the contribu-
tion of By to the end-to-end false-positive probability
is the product of the probability that a non-member
query lands in interval I, and the filter’s conditional
false-positive probability. This suggests that filter bits
should be allocated in proportion to how frequently non-
members land in the interval and how many members
must be stored in that interval. The cascade can ex-
ploit this by using more bits per key in intervals that re-
ceive more non-member queries, because reducing false
positives there yields larger global benefit [25]. Con-
versely, intervals that are rarely visited by non-members
can use fewer bits per key without violating the global
false-positive budget.

Training also includes selecting the partitioning of
the score axis. One method is to choose thresholds so
that each interval contains an equal number of mem-
ber keys, which equalizes ny and simplifies sizing. An-
other method is to choose thresholds so that each inter-
val contains an equal probability mass of non-member
queries, which equalizes the weight of each interval in the
global false-positive rate. For high-selectivity lookups,
non-member mass is often much larger than member
mass, and it can be advantageous to partition based
on non-member mass to better control the dominant
false-positive contribution [26]. A hybrid strategy se-
lects thresholds using both member and non-member
histograms so that intervals isolate regions where mem-
ber density is high relative to non-member density, en-
abling small residual filters with strong effect.

Because the store evolves, the cascade must support
updates. The residual filters are defined in terms of
membership in §; and score interval membership. When

S; changes, keys are inserted and deleted, and their scores
may drift if the scorer depends on time-varying features
[27]. If the residual filters are standard Bloom filters,
deletions are not supported; if deletions are required,
the system can use counting Bloom filters, cuckoo fil-
ters, or stable Bloom variants, or it can rebuild filters
periodically. The cascade framework is compatible with
any approximate membership filter that offers a tunable
false-positive curve and an update model, but the error
bounds must reflect the chosen filter type. For simplic-
ity, the subsequent analysis will treat the residual filters
as Bloom-like filters with a known upper bound on false
positives, and it will incorporate rebuild windows via an
operational staleness budget.

4. Tight Error Bounds and Resource
Optimization

The central requirement for high-selectivity deployment
is an explicit bound on the cascade’s end-to-end false-
positive probability for non-member queries, and an ex-
plicit bound on false negatives for member queries under
the chosen correctness policy. The cascade is designed
so that these bounds can be computed from measurable
quantities: score interval probabilities and filter param-
eters [28]. Tightness is achieved by avoiding unneces-
sary union bounds when independence structure is avail-
able, and by conditioning on the score interval selection,
which is deterministic given the score.

Let A(k) denote the event that the cascade returns
accept for key k. For a non-member query k ¢ S;, a false
positive occurs when A(k) = 1. For a member query
k € S;, a false negative occurs when A (k) =0 if the system
treats rejection as definitive. In a key—value store that
always performs a backend lookup upon accept, the cas-
cade’s output controls whether the store proceeds with
a lookup [29]. Therefore, the relevant non-member false-

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

positive rate is Pr{[A(k) = 1| Y (k) = 0] under the query
distribution conditioned on non-members, and the rele-
vant member false-negative rate is Pr[A(k) =0 | Y (k) = 1]
under the query distribution conditioned on members.

Under the interval-based cascade described earlier,
for any key k the interval index ¢(k) is a deterministic
function of the score. For non-members, define py =
Pr[¢(k) =¢|Y(k)=0] for £€{0,1,...,L+1}. Define gy =
Pr[é(k) =£|Y (k) = 1] similarly for members. The interval
0 corresponds to immediate acceptance, and intervals 1
through L correspond to residual filters By [30]. The tail
interval L+ 1 corresponds to either immediate rejection
or a guard.

Assume first the no-false-negative configuration in
which members in every interval are accepted by con-
struction, either via residual filters that contain all mem-
bers in their interval or via an exact guard for the tail.
In this case, the algorithmic false-negative probability
is zero at build time, because for any member k € S;, ei-
ther s € Iy and the cascade accepts immediately, or s € I
and the key is included in By so the filter returns pos-
itive with probability 1 under idealization, or s € Iy
and the guard accepts. In practice, approximate filters
can have false negatives due to implementation errors,
hash collisions in certain structures, or staleness. These
are treated as operational risks and can be mitigated
by using Bloom filters for residuals and ensuring update
consistency. The analysis therefore focuses on bounding
false positives [31].

For a non-member k, if ¢(k) =0 then the cascade
accepts, contributing probability pg. If ¢(k) = ¢ for 1 <
£ < L, then the cascade accepts if and only if B, returns
positive on k. Let & denote an upper bound on the false-
positive probability of B, for keys not in its stored set,
under the hash assumptions and any implementation-
specific constraints. Conditioned on ¢(k) = ¢ and Y (k) =
0, the probability that B, returns positive is at most &.
Therefore the cascade false-positive probability satisfies
32)

PrA(k) = 1| Y (k) = 0] = Pr[£(k) = 0 | Y (k) = 0]

L
+ Y Pr{t(k) = €| Y (k) = 0] Pr[B(k) = 1 | £(k) :f’y@ =0]
=1 min Ny 1+ Miail

9/16

to 0 by using a tail residual filter By with small false-
positive probability, yielding & = €11, or by using an
exact guard with o =0 but a backend lookup cost. The
analysis can incorporate either [33].

The expression above is already close to tight be-
cause it conditions on the interval event, which is deter-
ministic given the score and does not require indepen-
dence assumptions between the scorer and the residual
filter hashes. The only slack arises from using an up-
per bound & rather than the exact false-positive rate
conditioned on the query distribution restricted to the
interval. Tightness can be improved by measuring the
realized false-positive rate of each residual filter on a
held-out non-member sample restricted to the interval.
However, for tight and auditable bounds, it is useful to
retain the worst-case & implied by filter parameters, and
then separately maintain monitoring to validate that re-
alized rates are below bound [34].

A key requirement is to enforce a global false-positive
budget € such that

L

po+ Y prer+pro<e (2)
/=1

Given measured py; and chosen «, the task is to choose
thresholds (which determine p; and the member counts
ng) and filter sizes (which determine &) to satisfy the
inequality while minimizing total memory and compute
overhead. Since py is purely a function of the scorer and
Ty, it can be controlled by moving 7y upward or down-
ward. Increasing 7y reduces pg but increases the number
of members that fall into residual intervals, potentially
increasing total residual memory. This introduces the
central trade-off in learned filters: shifting work from
the scorer acceptance region into residual filters [35].
To incorporate memory, consider a Bloom-like resid-
ual filter with false-positive curve approximately & =~
exp(—cmy/ny) for a constant ¢ > 0 depending on the fil-
ter design, where my is bits and ny is stored keys. For
classic Bloom filters at optimal hashing, ¢ ~ (In2)?. Us-
ing this approximation yields an optimization problem

3)

o Awb im0
+Pr[l(k) =L+ 1]|Y(k) = 0] Pr[tail accepts | K(I/J: L+ IEY(k) =0]

L
<po+) pe&r+prac, (1)

=1
where « is the acceptance probability in the tail for non-
members, determined by the guard policy. If the tail
is rejected immediately, then o = 0, reducing false posi-
tives but introducing false negatives for members in the
tail. If the tail is always accepted to preserve no false
negatives, then o = 1, which may be unacceptable for
false positives unless the tail probability pr; is negligi-
ble. In practice, a no-false-negative cascade sets & close

st. po<ro>+zm<{r}>exp(my

& ~n{Th
(4)
my >0 for all £, (5)

where my,;; and o represent the tail policy, and where
pe and ny depend on the thresholds through the score
distributions for non-members and members. This for-
mulation highlights that the marginal benefit of allocat-
ing additional bits to interval ¢ is proportional to py
and to the current &, and inversely related to ny. For

) Fpea({t)a<

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

fixed thresholds, the optimal allocation of my to meet
a constraint resembles a water-filling solution [36]. Us-
ing Lagrange multipliers, for intervals where my; > 0 the
optimality condition satisfies

1weXp<—cnw)C——l, (6)
ng

ny

for some A > 0 chosen to satisfy the global constraint
with equality. Solving for my, gives

-t 6(32)

with the understanding that intervals with %f[<1 re-

ceive my = 0 because allocating bits there yields insuf-
ficient global benefit. This expression is useful opera-
tionally because it links bits-per-key in each interval to
the ratio py/ng, which can be interpreted as the non-
member query mass per stored member key in that in-
terval [37]. Intervals that attract many non-member
queries relative to their stored members should receive
more bits per key, because they are visited frequently
and contain relatively few members, making them effi-
cient to filter.

The thresholds influence both py and ny, and their se-
lection can be approached by discretizing the score into
bins and searching for partitions that minimize memory
under the bound. Because the score distribution can be
estimated as histograms for members and non-members,
the optimization can operate on these histograms. Let
the score range be binned into B bins, and let u;, denote
the fraction of non-members in bin b, and v, denote the
count of members in bin b. A partition into intervals
corresponds to grouping consecutive bins [38]. For any
interval £ consisting of bins b € %, we have py =} jc 2, up
and ny =Y e, vp. The acceptance region Iy corresponds
to bins above 1y, contributing pg. The residual intervals
contribute py& to the bound. This discrete represen-
tation makes the optimization implementable and au-
ditable: the store can maintain the histograms online
and recompute thresholds and allocations when drift is
detected.

The above bound is tight with respect to the cas-
cade structure, but it assumes that & is independent of
the restricted query distribution within interval ¢. For
Bloom-like filters, the false-positive rate is largely inde-
pendent of the query distribution because it depends on
hash outputs, provided keys are hashed uniformly [39].
In practice, keys may be structured, and hash functions
may not perfectly randomize, especially if performance
constraints lead to reduced hashing. To maintain tight
bounds, the system can incorporate conservative hash
families and validate uniformity by measuring bit oc-
cupancy and empirical false-positive rates on sampled
non-members. Additionally, the cascade can be built
over hashed representations of keys, using a high-quality

10/16

hash as a preprocessing step, so that the residual filters
see uniformly distributed inputs even if original keys are
structured. This shifts the distributional assumptions
away from the original key space and improves bound
reliability [40].

The cascade may also permit a controlled false-negative
probability if the application allows it, for example in
caches where a missed member can be recovered by a
slower path. In that case, the tail interval can be re-
jected without a guard, and the member false-negative
probability becomes gr+; = Pr[¢(k) = L+1|Y(k) =1].
The system can then impose a constraint g7 < 6 for a
target 6, and the optimization includes both constraints:

L

po+ Y prec<e,
=1

gL < 6. (8)

This variant illustrates how the cascade framework sup-
ports explicit trade-offs rather than implicit assumptions.
In strongly consistent key—value stores, § is typically set
to 0, implemented by ensuring that all members are ac-
cepted by some stage, but the formalism remains useful
because it separates algorithmic and operational contri-
butions to misses.

A final aspect of tightness concerns composition across
shards. Suppose each shard m has its own cascade with
false-positive bound €™ and receives a fraction w,, of
non-member queries. Then the global false-positive rate
is bounded by ¥, wme™). If the system enforces a global
budget &jobal, it can allocate per-shard budgets such that
Yo wem < €global- This allocation can itself be opti-
mized, giving more budget to shards where achieving a
small €™ is expensive in memory due to weaker sepa-
rability, and less budget to shards where separability is
strong. Because w,, can be measured online, the system
can adjust budgets and thresholds without retraining
the global scorer, preserving operational flexibility while
maintaining a quantitative global bound [41].

5. Distributed Integration and Operational
Considerations

Deploying a learned Bloom filter cascade in a distributed
key—value store requires integrating model scoring, resid-
ual filters, calibration, and update handling into an ex-
isting lookup pipeline without harming tail latency or
correctness. The cascade must also be observable: it
should export metrics that validate the bound assump-
tions and detect drift. This section discusses how to
implement shard-local cascades, manage updates, and
maintain tight bounds under realistic constraints.

The primary deployment point for a high-selectivity
cascade is at the shard front door, before expensive in-
dex operations. Upon receiving a request, the shard
computes the feature map ¢ (k) and evaluates the scorer
fo(¢(k)) to obtain a score s [42]. The feature map must

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

be fast to compute and stable across software versions.
In many stores, the key is a byte string; feature extrac-
tion may include prefix hashes, length, namespace iden-
tifiers, and tenant tags that are available from request
context. A critical design constraint is that the scorer
must be deterministic and consistent across replicas, so
that the same key yields the same score regardless of
which replica serves the request. Determinism is impor-
tant for debugging and for ensuring that residual filter
membership is well-defined [43]. Therefore, any features
derived from mutable state must be carefully controlled,
and any non-deterministic operations such as floating-
point reductions must be made consistent via fixed pre-
cision or stable kernels.

The residual filters By are shard-local data structures.
They can be stored in memory and updated via rebuilds
or incremental updates. A practical approach is to re-
build the residual filters periodically from the authorita-
tive set S,(m)7 using the current model version and thresh-
olds. Rebuild frequency depends on update rate and on
the acceptable staleness risk. If the store supports com-
paction or segment creation, residual filters can be built
per segment and combined logically; however, for the
cascade defined by score intervals, the natural unit is the
shard’s full set because the interval assignment depends
on the model score [44]. Still, segment-level builds can
be achieved by storing, for each segment, residual filters
restricted to the segment’s keys in each interval, and
combining them by querying the appropriate segment
filters. This increases query overhead because multiple
segments may need to be checked, so shard-level filters
are preferable when the primary goal is front-door rejec-
tion.

To maintain no false negatives, updates must ensure
that a newly inserted key is not rejected due to stale fil-
ters. One operational strategy is to treat the cascade as
an optimization hint rather than a definitive decision for
writes or for reads that must be correct. For a read, if
the cascade rejects, the system may still perform a cheap
verification in a small exact index, or it may route the
request to a replica that holds a more up-to-date filter
[45]. Another strategy is to update the residual filters
synchronously on writes, at least for the intervals that
could reject the key. Because the cascade is designed to
reject negatives aggressively, synchronous updates can
be limited to a small structure: the store can maintain
a write buffer of recently inserted keys that are always
accepted, either by placing them in an always-accept
cache or by inserting them into a small auxiliary filter
that is checked before rejection. This auxiliary filter can
be exact or approximate but must avoid false negatives
for recently inserted keys. Periodic rebuild then incorpo-
rates these keys into the main residual filters and clears
the buffer [46].

Deletions are more challenging because Bloom fil-

11/16

ters do not support them. In a key—value store, dele-
tions occur due to explicit deletes, TTL expiration, or
compaction drops. If a residual filter retains deleted
keys, it will produce additional false positives, increas-
ing backend load but not violating correctness. There-
fore, one acceptable policy is to allow residual filters
to be deletion-stale and rebuild periodically to remove
deleted keys. The bound must then incorporate the ef-
fect of stale keys on & [47]. For Bloom filters, adding
extra keys increases bit occupancy and thus increases
false-positive probability. If the store can bound the
maximum number of stale keys between rebuilds, it can
compute an upper bound on the false-positive rate by
treating ny as the maximum possible stored count in-
cluding stale keys. Because this is a worst-case bound,
it may be conservative; however, it remains auditable.
Alternatively, counting Bloom filters or cuckoo filters
support deletions, reducing staleness effects but increas-
ing memory and complexity. The cascade framework
supports either choice by parameterizing each residual
structure with an explicit false-positive bound function
of its current load [48].

Model versioning is another operational constraint.
If the scorer changes, the score intervals and thus the
definition of §; change, requiring residual filters to be
rebuilt for the new model. During a rolling upgrade, dif-
ferent replicas might run different model versions, lead-
ing to inconsistency. To avoid this, a shard can store the
model version used to build the filters and reject using
only that version. Requests can be routed to replicas
with matching versions, or the shard can keep multiple
cascades in parallel during transition [49]. Keeping par-
allel cascades increases memory but simplifies safety. A
conservative approach is to maintain a baseline classical
Bloom filter in parallel as a fallback during transitions,
ensuring that the system can reject negatives safely even
if the learned cascade is temporarily disabled.

Calibration drift is addressed by online monitoring of
score distributions. The shard can maintain histograms
of s for a sample of non-member queries and for observed
member queries [50]. Because non-member queries are
plentiful in high-selectivity regimes, the non-member his-
togram can be estimated accurately with modest sam-
pling. For member keys, the histogram can be built
from the stored set via periodic sampling, or from posi-
tive queries. The thresholds 7, can then be adjusted to
maintain target po and to control pry;. However, ad-
justing thresholds changes the membership assignment
of keys to residual filters. Therefore, threshold adjust-
ments without rebuilding filters can violate the no-false-
negative guarantee if a member key moves into an inter-
val whose filter does not contain it. To support online ad-
justment while preserving correctness, the cascade can
restrict threshold changes to be monotone in a safe di-
rection [51]. For example, increasing) moves keys from

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

immediate-accept into residual intervals, which is safe if
the residual filters contain all members below the old
To. But the residual filters were built with a specific
partition, so arbitrary threshold changes are unsafe. A
practical solution is to decouple score partitioning used
for residual filters from the acceptance rule by defining
residual filters on fixed bins and allowing the acceptance
threshold to move only at bin boundaries that preserve
membership containment. If residual filters are built for
a fine-grained binning, then thresholds can move across
bins by activating or deactivating entire bins, which can
be done safely if the corresponding residual filters exist.

Another solution is to use a two-layer logic: the
scorer decides whether to accept immediately; if it would
reject, the system consults a backup structure that con-
tains all members that might be rejected under any al-
lowed threshold [52]. This is equivalent to choosing a
conservative lower threshold for backup inclusion and al-
lowing the operational threshold to vary above it. Con-
cretely, pick a build-time threshold T4 such that all
keys with s < Thjg are included in a backup filter. Then
at runtime choose an operational threshold Top > Tpuila-
Any member with s < 7, is also in the backup because
s < Top implies s < Tpyjg is not necessarily true, so to
guarantee containment one instead requires Top < Tyuild-
Therefore, to allow threshold increases, the backup must
include members below the maximum possible opera-
tional threshold. This suggests building with a high
threshold and allowing only decreases. In many systems,
decreasing 7y increases immediate accepts and thus in-
creases false positives but reduces residual load; this can
be used as a safety valve under load, while preserving
correctness [53]. The cascade can be designed so that
the safe direction of threshold movement corresponds to
graceful degradation under overload.

Tight error bounds require that the system can es-
timate py, the probability that a non-member query
falls into interval ¢. In a distributed store, non-member
queries are observed directly, so the shard can estimate
pr by logging scores for rejected or accepted non-member
queries. The challenge is determining whether a query
is a non-member without performing a lookup, which
would defeat the purpose. This can be handled by sam-
pling: for a small fraction of queries, the store performs
the full lookup regardless of the cascade decision and
records whether the key was present [54]. This yields
unbiased estimates of py and of realized false positives.
The sampling rate can be small because high through-
put yields many samples, and the sampling overhead can
be bounded. The system can then compute confidence
intervals for p, and adjust the bound conservatively by
using upper confidence bounds for pg and p, when en-
forcing an auditable guarantee.

Shard heterogeneity implies that a single global model
may have different separability across shards. The cas-

12/16

cade design accommodates this by allowing shard-local
thresholds and residual allocations [55]. Each shard mea-
sures its own score histograms and chooses thresholds
and filter sizes to meet a shard-local budget. If a global
false-positive budget must be enforced, the system can
allocate budgets dynamically based on observed query
rates and on memory availability. This is important in
multi-tenant environments where certain tenants may
generate disproportionate negative queries. The cas-
cade can incorporate tenant identifiers into features and
can maintain per-tenant histograms, enabling tenant-
specific thresholds or even tenant-specific residual filters
[56]. However, per-tenant filters increase complexity and
memory fragmentation, so a practical design aggregates
tenants into classes based on observed score distribu-
tions.

Evaluation of the cascade in a distributed setting
must consider both micro-level filter metrics and macro-
level system metrics. Micro-level metrics include the per-
interval member counts ny, the per-interval non-member
probabilities py, the configured & from filter parameters,
and the measured empirical false-positive rates. Macro-
level metrics include backend lookup reduction, CPU
utilization, cache hit rate impact, and tail latency changes.
For high-selectivity lookups, a small increase in false pos-
itives can have large cost, so evaluation must focus on
the operating region corresponding to the target € [57].
This often requires large-scale sampling or replay of pro-
duction traces to estimate rare events. The tight bound
framework supports this by enabling operators to reason
in terms of measured p, and configured &, reducing re-
liance on observing extremely rare global false positives
directly.

An important practical consideration is compute over-
head. The learned scorer adds CPU cost compared to
a pure Bloom filter, and residual filters add additional
memory accesses. The cascade is beneficial if the cost
of scoring and residual checks is less than the cost saved
by avoiding backend lookups [58]. In high-selectivity
regimes, backend lookups are expensive relative to scor-
ing, but the scorer must still be highly optimized. Tech-
niques include feature extraction with fixed offsets, model
quantization, and vectorized evaluation. Additionally,
the cascade can exploit early exits: if the score falls in
the immediate accept region, no residual filter is con-
sulted; if it falls in a region with a very small residual
filter, the check may be cache-resident. The cascade de-
sign can also be aligned with cache locality by ordering
intervals by expected query mass and placing their filters
in contiguous memory [59].

Finally, fault tolerance requires that the cascade does
not become a single point of failure. If the model or fil-
ters are unavailable, the shard must fall back to a safe
behavior, typically performing normal lookups without
filtering or using a baseline Bloom filter. Because the

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

cascade is an optimization, such fallback is acceptable,
though it increases load. The system should therefore
maintain the ability to disable the cascade quickly and
to revert to a known-safe configuration. The tight bound
framework aids this by making the cascade behavior
explicit and by enabling operators to set conservative
thresholds when uncertainty arises, preserving bounded
false positives at the cost of additional backend work
[60].

6. Conclusion

This paper presented a learned Bloom filter cascade tai-
lored to high-selectivity lookups in distributed key—value

stores, with an emphasis on tight, composable error bounds

suitable for operational deployment. The cascade com-
bines a calibrated learned scorer with a sequence of resid-
ual approximate filters over score intervals and, when
required, a guard mechanism that enforces a no-false-
negative policy. By conditioning the analysis on de-
terministic score intervals, the end-to-end false-positive

probability decomposes into a weighted sum of per-interval

contributions, enabling tight bounds that depend on
measurable non-member interval probabilities and known
filter false-positive parameters. This structure supports
explicit budgeting, shard-local tuning, and global com-
position across heterogeneous shards.

The resource optimization perspective highlighted that
memory should be allocated preferentially to intervals
that attract substantial non-member query mass rela-
tive to their stored members, because these intervals
dominate global false positives [61]. A histogram-based
representation of score distributions provides an imple-
mentable pathway to selecting thresholds and allocating
filter bits under a prescribed global false-positive budget.
The distributed integration discussion addressed practi-
cal constraints including updates, deletions, model ver-
sioning, calibration drift, and observability, emphasizing
mechanisms that preserve bounded behavior under drift
and rolling upgrades while maintaining the ability to fall
back safely.

Overall, the learned cascade framework is most ap-
plicable when the key distribution exhibits exploitable
structure and when negative lookups dominate enough
that avoiding backend work amortizes the additional
scoring cost. The tight bound formulation provides a ba-
sis for auditable deployment decisions and for monitoring-
driven recalibration. Future extensions within the same
bounding framework include incorporating richer resid-
ual structures with deletions, adapting thresholds under
drift using safe monotone adjustments, and optimizing
jointly for memory and compute under explicit latency
constraints in multi-tier storage pipelines [62].

1]

(10]

(11]

13/16

References

J. Jaskolka, “Evaluating the exploitability of im-
plicit interactions in distributed systems.,” 6 2020.

S. C. Voinea, S. Vladov, and F. Rensing, “Coronaz:
another distributed systems project.,” 2 2021.

I. Siddique, “Libguides:
Home,” 7 2018.

C. B. Jones, T. Haines, and R. Darbali-Zamora,
“Hosting capacity considerations for the combina-
tion of wind and solar on distribution electric power
systems subject to different levels of coincident oper-
ations,” Journal of Renewable and Sustainable En-
ergy, vol. 17, 11 2025.

J.-H. Syu, J. C.-W. Lin, P. Biernacki, and A. Ziebin-
ski, “Machine learning-based calibration approaches
for single-beam and multiple-beam distance sen-
sors,” IEEE Sensors Journal, vol. 24, pp. 975-983,
1 2024.

L. Mariani, M. Pezze, O. Riganelli, and R. Xin,
“Predicting failures in multi-tier distributed sys-
tems,” 11 2019.

R. Malik, S. Kim, X. Jin, C. Ramachandran, J. Han,
I. Gupta, and K. Nahrstedt, “Mlr-index: An in-
dex structure for fast and scalable similarity search
in high dimensions,” in International Conference
on Scientific and Statistical Database Management,
pp- 167184, Springer, 2009.

F. A. Wolf and P. Miiller, “Verifiable security poli-
cies for distributed systems,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer
and Communications Security, pp. 4-18, ACM, 12
2024.

Distributed systems:

“Demystifying distributed systems in cloud-native
environments,” Journal of Computational Analysis
and Applications, vol. 34, 10 2025.

X. Wei, Z. Huang, T. Sun, Y. Hao, R. Chen, M. Han,
J. Gu, and H. Chen, “Phoenixos: Concurrent os-
level gpu checkpoint and restore with validated
speculation,” in Proceedings of the ACM SIGOPS
31st Symposium on Operating Systems Principles,
pp. 996-1013, ACM, 10 2025.

M. Krzysztoni, B. Bok, P. Zakieta, and J. Kolodziej,
“Evasion attacks on ml in domains with nonlinear
constraints,” in 2024 IEEE 24th International Sym-

posium on Cluster, Cloud and Internet Computing
Workshops (CCGridW), pp. 112-119, IEEE, 5 2024.

Scalable Distributed Systems, 2290-2290.
Springer New York, 6 2018.

bp-

M. Broy, “Concurrent distributed systems beyond
monotonicity,” 1 2024.

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

C. Zhu, W. Zheng, X. Fan, X. Deng, S. Liu, L. Yi,
W. Xi, and Y.-S. Jeong, “Graph-empowered multi-
dimensional target full-coverage reliability for inter-
net of everything,” IEEE Internet of Things Journal,
vol. 12, pp. 3707-3719, 2 2025.

D. Marek, P. Biernacki, J. Szygula, and A. Doman-
ski, “General concepts of a simulation method for
automated guided vehicle in industry 4.0,” in 2022
IEEE International Conference on Big Data (Big
Data), pp. 6306-6314, IEEE, 12 2022.

E. Becks, P. Zdankin, V. Matkovic, and T. Weis,
“Complexity of smart home setups: A qualitative
user study on smart home assistance and impli-
cations on technical requirements,” Technologies,
vol. 11, pp. 9-9, 1 2023.

R. Alfonso, C. Daher, M. Arzamendia, K. Cikel,
D. Gregor, D. Gutierrez, S. Toral, and M. Vil-
lagra, “A motorcyclist helmet detection system
through a two-stage cnn approach,” in 2021 IEEE
CHILEAN Conference on Electrical, Electronics En-
gineering, Information and Communication Tech-

nologies (CHILECON), pp. 1-6, IEEE, 12 2021.

R. K. Ghosh and H. Ghosh, “Global states and ter-
mination detection,” 2 2023.

A. Rashidov, A. Akhatov, I. Aminov, D. Mar-
donov, and A. Dagur, Distribution of data flows
in distributed systems using hierarchical clustering,
pp- 207-212. CRC Press, 6 2024.

R. Chandrasekar, R. Suresh, and S. Ponnam-
balam, “Evaluating an obstacle avoidance strategy
to ant colony optimization algorithm for classifica-
tion in event logs,” in 2006 International Confer-
aence on Advanced Computing and Communica-
tions, pp. 628-629, IEEE, 2006.

A. Desai, A. Phanishayee, S. Qadeer, and S. A. Se-
shia, “Compositional programming and testing of
dynamic distributed systems,” Proceedings of the
ACM on Programming Languages, vol. 2, pp. 159—
30, 10 2018.

J. F. Herculano, I.. O. S. de Andrade, W. D. P.
Pereira, and A. S. de Sa, “E-theta: An efficient
and adaptive tdma approach for wireless body area
networks,” in 2024 XIV Brazilian Symposium on
Computing Systems Engineering (SBESC), pp. 1-6,
IEEE, 11 2024.

E. Becks, M. Josten, V. Matkovic, and T. Weis,
“Revising poor man’s eye tracker for crowd-sourced
studies,” in 2023 IEEE International Conference on
Pervasive Computing and Communications Work-
shops and other Affiliated Events (PerCom Work-
shops), pp. 328-330, IEEE, 3 2023.

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(34]

35]

14/16

K. Cui, S. Liu, W. Feng, X. Deng, L. Gao, M. Cheng,
H. Lu, and L. T. Yang, “Correlation-aware cross-
modal attention network for fashion compatibility
modeling in ugc systems,” ACM Transactions on
Multimedia Computing, Communications, and Ap-
plications, vol. 21, pp. 1-24, 11 2025.

K. R. V. Dame, T. B. Bergmann, M. Aichouri, and
M. Pantoja, A Comparative Study of Consensus
Algorithms for Distributed Systems, pp. 120-130.
Germany: Springer International Publishing, 4
2022.

“Reliable networked and distributed systems,” 4
2024.

T. Srinivasan, R. Chandrasekar, V. Vijaykumar,
V. Mahadevan, A. Meyyappan, and A. Manikan-
dan, “Localized tree change multicast protocol for
mobile ad hoc networks,” in 2006 International Con-
ference on Wireless and Mobile Communications
(ICWMC’06), pp. 44—44, IEEE, 2006.

M. A. Helcig and S. Nastic, “Fedccl: Federated
clustered continual learning framework for privacy-
focused energy forecasting,” in 2025 IEEE 9th Inter-
national Conference on Fog and Edge Computing
(ICFEC), pp. 50-57, IEEE, 5 2025.

I. Argyroulis, “Recent advancements in distributed
system communications,” 1 2021.

K. Agarwal, O. Khare, A. Sharma, A. Prakash, and
A. K. Shukla, “Artificial intelligence in a distributed
system of the future,” 7 2024.

R. S. Chowhan, Evolution and Paradigm Shift in
Distributed System Architecture. IntechOpen, 4
2019.

OSDI - Bringing Decentralized Search to Decentral-
ized Services, 6 2021.

R. Chandrasekar and T. Srinivasan, “An improved
probabilistic ant based clustering for distributed
databases,” in Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI,
pp. 2701-2706, 2007.

J. Chen, P. Wang, S. Du, and W. Wang, “Log pat-
tern mining for distributed system maintenance,”
Complexity, vol. 2020, pp. 1-12, 12 2020.

S. Agarwal, M. A. Rodriguez, and R. Buyya,
“Serv-drishti: An interactive serverless function re-
quest simulation engine and visualiser,” in 2025
IEEE 35th International Telecommunication Net-
works and Applications Conference (ITNAC), pp. 1-
7, IEEE, 11 2025.

A. HeB, F. J. Hauck, and E. Meifiner, “Consensus-
agnostic state-machine replication,” in Proceedings

of the 25th International Middleware Conference,
pp. 341-353, ACM, 12 2024.

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —

(37]

(38]

(39]

[40]

(41]

(42]

(43]

(44]

[45]

[46]

M. Zaccarini, F. Poltronieri, C. Stefanelli, and
M. Tortonesi, “Hybridized hot restart via reinforce-
ment learning for microservice orchestration,” in
NOMS 2025-2025 TEEE Network Operations and
Management Symposium, pp. 1-7, IEEE, 5 2025.

A. Poshtkohi and M. B. Ghaznavi-Ghoushchi, IoT
and Distributed Systems, pp. 15-22. Auerbach Pub-
lications, 2 2023.

A. Samanta, C. Chetri, D. Karnehm, A. Neve,
and S. Williamson, “Temporal sensitivity analy-
sis of internal temperature informed charging al-
gorithms and rapid thermal management system
for e-mobility,” in 2024 IEEE Energy Conversion
Congress and Exposition (ECCE), pp. 2302-2304,
IEEE, 10 2024.

A. Lapkovskis, B. Sedlak, S. Magntsson, S. Dust-
dar, and P. K. Donta, “Benchmarking dynamic
slo compliance in distributed computing continuum
systems,” in 2025 IEEE International Conference
on Edge Computing and Communications (EDGE),
pp. 93-102, IEEE, 7 2025.

A. Ba, F. O’Donncha, J. Ploennigs, and M. Az-
mat, “Efficient extraction of insights at the edges
of distributed systems,” in 2023 IEEE International
Conference on Big Data (BigData), pp. 1610-1619,
IEEE, 12 2023.

F. N. Al-Wesabi, H. G. Iskandar, and M. M. Ghi-
lan, “Improving performance in component based
distributed systems,” ICST Transactions on Scal-
able Information Systems, vol. 6, pp. 159357—, 7
2019.

A. R. Pratama, F. J. Simanjuntak, A. Lazovik, and
M. Aiello, APPIS - Low-power Appliance Recogni-
tion using Recurrent Neural Networks. 3 2018.

B. V. S. Pinto, D. R. Melo, C. A. Zeferino, E. A.
Bezerra, and F. Viel, “Implementation of double
sha-256 in hls for fpga using real bitcoin blocks,” in
2025 17th Seminar on Power Electronics and Con-
trol (SEPOC), pp. 1-7, IEEE, 11 2025.

A. Hennebelle, Q. Dieng, L. Ismail, and R. Buyya,
“Smartedge: Smart healthcare end-to-end inte-
grated edge and cloud computing system for dia-
betes prediction enabled by ensemble machine learn-
ing,” in 2024 IEEE International Conference on
Cloud Computing Technology and Science (Cloud-
Com), pp. 127-134, IEEE, 12 2024.

V. Vijaykumar, R. Chandrasekar, and T. Srini-
vasan, “An obstacle avoidance strategy to ant
colony optimization algorithm for classification in
event logs,” in 2006 IEEE Conference on Cybernet-
ics and Intelligent Systems, pp. 1-6, IEEE, 2006.

[47]

48]

[49]

(50]

[51]

(52]

(56]

(57]

15/16

K. Mak, K. Osuka, and T. Wada, “Development
of a multi-master communication platform for mo-
bile distributed systems,” Journal of Robotics and
Mechatronics, vol. 31, pp. 348-354, 4 2019.

“Parameterized synthesis of concurrent and dis-
tributed system,” 11 2023.

7. Wang, H. Chen, Y. Wang, C. Tang, and H. Wang,
“The concurrent learned indexes for multicore data
storage,” ACM Transactions on Storage, vol. 18,
pp- 1-35, 1 2022.

A. Hermann, N. Trkulja, P. Wachter, B. Erb, and
F. Kargl, “Quantification methods for trust in coop-
erative driving,” in 2025 IEEE Vehicular Network-
ing Conference (VNC), pp. 1-8, IEEE, 6 2025.

J. Yang, Z. Wang, R. Chen, and H. Chen, “A
system-level abstraction and service for flourishing
ai-powered applications,” in Proceedings of the 16th
ACM SIGOPS Asia-Pacific Workshop on Systems,
pp. 106-114, ACM, 10 2025.

K. Gorokhovskyi, O. Zhylenko, and O. Franchuk,
“Distributed system technical audit,” NaUKMA Re-
search Papers. Computer Science, vol. 3, pp. 69-74,
12 2020.

P. Afanasev, A. Ilyushina, S. Kolesnichenko,
P. Komissarov, and E. Zheleznov, “Environmen-
tal monitoring using distributed system theory,”
in SGEM International Multidisciplinary Scien-
tific GeoConference EXPO Proceedings, vol. 21,
pp- 247-254, STEF92 Technology, 12 2021.

V. Mahaliyanaarachchi, “Security issues and miti-
gation mechanisms in distributed systems,” in 2023
3rd International Conference on Advanced Research
in Computing (ICARC), pp. 172-177, IEEE, 2 2023.

M. Arzamendia, D. Britez, G. Recalde, V. Gomez,
M. Santacruz, D. Gregor, D. Gutierrez, S. Toral,
and F. Cuellar, “An autonomous surface vehicle
for water quality measurements in a lake using
mqtt protocol,” in 2021 IEEE CHILEAN Confer-
ence on Electrical, Electronics Engineering, Infor-
mation and Communication Technologies (CHILE-
CON), pp. 1-5, IEEE, 12 2021.

M. Mditshwa, M. E. S. Mnguni, and M. Ratshi-
tanga, “The limitations of an automatic generation
control in stabilizing power system in the event
of load demand increase,” in 2022 30th Southern
African Universities Power Engineering Conference
(SAUPEC), vol. 9, pp. 1-5, IEEE, 1 2022.

M. Chen, M. T. Islam, M. A. Rodriguez, and
R. Buyya, “Trade: Network and traffic-aware adap-
tive scheduling for microservices under dynamics,”
IEEE Transactions on Parallel and Distributed Sys-
tems, pp. 1-14, 1 2025.

A Learned Bloom Filter Cascade for High-Selectivity Lookups in Distributed Key—Value Stores with Tight Error Bounds —
16/16

B8] X. Zhao, Z. Lei, G. Zhang, Y. Zhang, and
C. Xing, WISA - Blockchain and Distributed Sys-
tem, pp. 629-641. Germany: Springer International
Publishing, 9 2020.

391 R. Malik, C. Ramachandran, I. Gupta, and
K. Nahrstedt, “Samera: a scalable and memory-
efficient feature extraction algorithm for short 3d
video segments.,” in IMMERSCOM, p. 18, 2009.

A. Gogineni, “Resource management strategies in
heterogeneous distributed systems,” Journal of Ar-
tificial Intelligence, Machine Learning and Data Sci-
ence, vol. 2, pp. 2183-2189, 7 2024.

S. E, “Logical and vector clocks used in distributed
systems,” Journal of emerging technologies and in-
novative research, vol. 8, 5 2021.

[62] K. K. Rout, D. P. Mishra, and S. R. Salkuti, “Dead-
lock detection in distributed system,” Indonesian
Journal of Electrical Engineering and Computer Sci-
ence, vol. 24, pp. 1596-1603, 12 2021.

[60]

[61]

	
	Introduction
	System Model and Motivation
	Cascade Architecture and Training
	Tight Error Bounds and Resource Optimization
	Distributed Integration and Operational Considerations
	Conclusion
	References

