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Abstract
Two-sided e-commerce platforms increasingly intermediate trade by selecting which sellers are shown to which
buyers, often through search, recommendation, and sponsored ranking systems. These systems can generate
systematically different outcomes across seller groups even when listings are similar in measured quality or price,
raising questions about the mechanisms that produce disparate matching and about the scope of discrimination
in algorithmically mediated markets. This paper develops a formal analysis of disparate outcomes in buyer–seller
matching on a platform that controls exposure and information while buyers and sellers respond strategically.
The framework accommodates taste-based discrimination in buyer preferences, statistical discrimination
arising from heterogeneous beliefs and noisy signals about seller quality, and algorithmic discrimination that
emerges from optimization under partial observability, feedback, and constraints. The model yields equilibrium
conditions linking exposure, clicks, conversions, seller pricing, and platform objective functions. It also provides
a decomposition of disparity into components attributable to preference heterogeneity, information and
inference, and platform policy. The analysis highlights how subtle differences in priors, measurement error, and
exploration rules can produce persistent gaps in exposure and sales, including regimes where outcomes diverge
despite symmetric underlying quality distributions. The paper also characterizes design interventions based
on constrained optimization and counterfactual parity concepts, clarifying when they can reduce disparities
without inducing large efficiency losses, and when they primarily shift rents between market sides.
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1. Introduction
Two-sided e-commerce platforms organize markets by
mediating search and discovery, setting rules for list-
ing visibility, and producing matchings that determine
which sellers transact with which buyers [1]. In many
environments, buyers do not observe the full set of po-
tential sellers, and sellers compete for a limited sup-
ply of attention. Platform-controlled ranking and rec-
ommendation policies therefore operate as a market in-
stitution that allocates exposure and shapes the feasi-
ble set of trades. Disparate outcomes arise when sell-
ers belonging to different groups, such as categories de-
fined by location, size, or demographic attributes, sys-
tematically receive different exposure, different conver-
sion rates, or different realized prices even when they
are observationally similar in terms of item attributes,
service quality, and pricing. The presence of systematic
gaps has been interpreted through multiple lenses, in-
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cluding taste-based discrimination on the demand side,
statistical discrimination under imperfect information,
and algorithmic or institutional discrimination that can
arise from optimizing policies on biased data or under
constraints that embed asymmetric measurement. A
central analytical difficulty is that these channels inter-
act through equilibrium feedback: the platform observes
behavior that is itself shaped by platform policy, and
sellers adjust decisions such as pricing, shipping, or par-
ticipation in response to anticipated exposure and con-
version.

This paper develops a unified formal framework for
analyzing disparate outcomes in buyer–seller matching
on a platform that sets an exposure policy. The ap-
proach treats matching as a probabilistic allocation of at-
tention, rather than a one-to-one stable matching prob-
lem, because most online marketplaces allocate ranked
impressions and buyers often evaluate only a small pre-
fix of a list. The model builds a mapping from exposures
to choice probabilities and then to realized transactions,
incorporating how beliefs and learning affect choices and
how sellers strategically respond. Disparities are defined
in terms of group-conditional outcomes, both uncondi-
tional and conditional on latent quality, and the frame-
work explicitly distinguishes outcomes that arise from
taste parameters in utility from those driven by belief
distortions and those generated by the platform policy
itself. While the objective is formal, the intent is to
isolate mechanisms rather than to impose a single nor-
mative criterion [2].

A key component is the platform’s optimization prob-
lem. Platforms typically optimize a weighted objective
that may include expected revenue, consumer surplus
proxies, seller retention, and long-run engagement. The
platform selects ranking weights, exploration rates, or
reserve-like visibility thresholds under limited observ-
ability of seller quality. These decisions can generate dis-
parate outcomes even when the platform does not condi-
tion on group membership, because group membership
can correlate with measurement error, with supply-side
constraints, or with historical data that drives learning.
The model therefore treats group as a latent or explicit
attribute that can influence preferences, priors, and mea-
surement processes. This allows the analysis to cover
settings where group is observed and potentially used
by the platform, as well as settings where group is not
used but correlated features are.

The paper proceeds by describing a baseline static
equilibrium linking exposure to demand and supply, then
extending the framework to incorporate algorithmic learn-
ing and feedback loops over time. The static analysis
provides conditions under which disparities can persist
even in a one-shot environment, such as when buyers
have heterogeneous taste parameters or when signals
about quality are differentially noisy across groups. The

dynamic extension shows how even small initial differ-
ences can be amplified through learning rules that pri-
oritize exploitation of currently high-performing listings.
The feedback mechanism is formalized as a stochastic
approximation process with endogenous data, which can
converge to group-asymmetric fixed points. The frame-
work also facilitates the analysis of interventions, includ-
ing constrained optimization imposing parity conditions
on exposure or conversion, and information design tools
that equalize posterior beliefs by altering what signals
are revealed to buyers [3].

The contribution is primarily conceptual and ana-
lytical. By embedding discrimination channels in a two-
sided equilibrium with platform-controlled exposure and
endogenous learning, the framework clarifies what kinds
of data and counterfactuals are needed to attribute ob-
served disparities to particular mechanisms. It also yields
a set of comparative statics that describe how disparities
respond to changes in signal precision, exploration poli-
cies, and the elasticity of seller responses. The analysis
is structured to support empirical implementation with
platform logs, emphasizing identification challenges that
arise from the endogeneity of exposure and from the se-
lection of sellers into visibility. The goal is not to claim
that any one mechanism dominates in practice, but to
provide a formal scaffold for evaluating competing ex-
planations and for designing policies with transparent
tradeoffs.

s

2. Model and Notation
Consider a platform that intermediates interactions be-
tween a continuum of buyers and a continuum of sellers.
Time is initially static and indexed by a single period;
dynamic extensions are introduced later. Buyers are in-
dexed by i∈I and sellers by j ∈J . Each seller belongs
to a group g( j) ∈ G , where G is finite. Group may rep-
resent any partition relevant for disparity measurement,
including protected classes, seller size, or location. Each
seller offers one listing in the baseline model; extensions
can accommodate multi-product sellers without altering
the core logic by treating a seller–listing pair as an agent
[4].

Sellers have latent quality q j ∈ R and observed at-
tributes x j ∈ Rd , including price p j chosen by the seller.
Buyers have tastes θi and possibly group-related pref-
erences [5]. A buyer receives a ranked list of sellers
produced by the platform. Because attention is scarce,
the key platform choice is an exposure policy that maps
buyer context into a distribution over impressions. Let
c denote a buyer context, including the query, category,
and buyer-side covariates observed by the platform. For
a buyer in context c, the platform chooses an exposure
vector e(c) = (e j(c)) j∈J , where e j(c) ∈ [0,1] is the prob-
ability that seller j is shown to the buyer in a relevant
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12cml c X
Symbol Type Description

i ∈ B Buyer Index for buyers on the platform
j ∈ S Seller Index for sellers on the platform

xi Vector Buyer-side covariates (e.g., location, device, group)
z j Vector Seller-side covariates (e.g., rating, history, group)

Mi j Binary Indicator that buyer i is matched to seller j
ui(M) Real Utility of buyer i under matching configuration M

Table 1. Key notation used in the formal model of buyer–seller matching.

12cml c c c
Group Share of Buyers Share of Sellers Avg. Platform Tenure (months)

Group A 0.45 0.38 16.2
Group B 0.35 0.42 18.7
Group C 0.20 0.20 11.9
Overall 1.00 1.00 15.9

Table 2. Descriptive statistics of buyer and seller groups on the platform.

position. Normalization depends on page layout; for con-
creteness, assume ∑ j e j(c) = K where K is the expected
number of impressions allocated across sellers for that
buyer context. This representation abstracts from the
exact ranking positions while capturing the idea that
exposure is an allocative control.

Buyer i observing seller j forms a posterior belief
about q j based on signals. Let the platform reveal an
information vector si j that depends on listing attributes,
ratings, shipping promises, and any personalization. The
buyer’s posterior expectation is µi j =E[q j | si j,πi], where
πi denotes buyer prior parameters that may vary across
buyers and may correlate with group. Statistical dis-
crimination is represented by group-dependent priors,
such as E[q j | g( j)= g] differing across g, or group-dependent
signal likelihoods. Taste-based discrimination is repre-
sented by direct utility shifters that depend on g( j).

Given exposure, the buyer makes a choice that can
be decomposed into click and purchase. A reduced-form
choice model is often useful because platforms observe
clicks and purchases. Let a∈{0}∪J denote the buyer’s
action, where a = 0 corresponds to no purchase. Condi-
tional on being exposed to seller j, the buyer receives
indirect utility

Ui j = αiµi j −βi p j + γ⊤i z j +δi(g( j))+ εi j,

where z j are additional observed features and εi j is an
idiosyncratic shock. The term δi(g) captures taste-based
discrimination when it varies with group. A standard
specification sets εi j to be i.i.d. Type-I extreme value,
yielding multinomial logit choice probabilities over the
set of exposed sellers. Because the exposure policy is
probabilistic, the unconditional probability of purchase
from j integrates over exposure [6].

Let D j(c) denote the expected demand facing seller j
from buyers in context c. If buyers arrive with intensity

λ (c), then expected transactions for seller j are

Tj =
∫

λ (c)e j(c) Pr(a = j | exposed set,c)dc,

where the conditional probability depends on the set
of exposed sellers, but under a common approximation
the choice probability can be written as a function of
a score for each seller and an outside option. To ob-
tain tractable expressions, assume the platform draws
exposures independently across sellers subject to the
expected-impressions constraint, and that the buyer eval-
uates each shown seller in isolation with a purchase prob-
ability σ(Ui j) where σ(·) is logistic. Then

Tj =
∫

λ (c)e j(c)Ei

[
σ
(

αiµi j −βi p j + γ⊤i z j +δi(g( j))
)]

dc,

where expectation is over buyer heterogeneity and any
signal randomness.

Sellers choose prices and possibly other effort vari-
ables that affect quality or fulfillment. Let seller j choose
p j and effort r j at cost C j(r j), with latent quality q j =
q̄(x j,r j)+η j, where η j is idiosyncratic. Seller profit is

Π j = (p j − c j)Tj −C j(r j)−Fj,

where c j is marginal cost and Fj is fixed cost of partic-
ipation. Sellers enter if Π j ≥ 0. Group differences can
arise through differences in cost distributions, in access
to capital, or in shipping constraints; these are modeled
by allowing (c j,Fj,C j) to vary with g( j).

The platform chooses exposure policy e(·) and pos-
sibly the information policy that maps raw data into
signals si j. The platform objective aggregates expected
revenue and other terms [7]. A generic static objective
is

max
e(·),S

∫
λ (c)

[
∑

j
e j(c)R j(c;e,S )

]
dc−Ω(e),
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12cml c c c
Design Feature Baseline Biased Matching Fairness-Constrained

Objective Revenue Revenue Revenue + Fairness penalty
Ranking Signal Weight on Group 0.00 0.30 0.00
Personalization Intensity Medium High Medium

Exposure Floor for Minority Sellers None None 10% of impressions
Re-optimization Horizon 24 h 24 h 24 h

Table 3. Comparison of platform matching designs considered in the analysis.

12cml c c c
Outcome Group A Group B Disparity (B – A)

Match rate (%) 54.3 47.8 -6.5
Conversion rate (%) 18.9 14.2 -4.7
Avg. price realized 21.7 19.4 -2.3

Avg. rating received 4.52 4.31 -0.21
Complaint rate (%) 1.8 3.1 1.3

Table 4. Observed disparities in core market outcomes under the baseline algorithm.

where R j is expected platform payoff from exposing seller
j in context c and Ω(e) captures constraints and regular-
ization, such as limits on volatility, contractual obliga-
tions, or relevance requirements. If the platform earns a
commission rate κ, then R j may be κ p j times purchase
probability; if it sells sponsored placements, R j may in-
clude expected ad revenue. The information policy S
affects µi j by shaping signals and hence buyer beliefs.

Disparate outcomes are measured by comparing dis-
tributions of outcomes across groups. Let Yj be an out-
come such as exposure share, transactions, or revenue.
A basic disparity metric compares group means:

∆Y (g,g′) = E[Yj | g( j) = g]−E[Yj | g( j) = g′].

Because measured quality can be endogenous and noisy,
a more structural disparity metric conditions on latent
q j:

∆Y (g,g′;q)=E[Yj | g( j)= g,q j = q]−E[Yj | g( j)= g′,q j = q].

In practice q j is unobserved, but the distinction is impor-
tant for clarifying what counts as disparate treatment
versus disparate impact generated through correlated
differences in quality or costs.

3. Static Equilibrium and Disparity
Decomposition

A static equilibrium consists of a seller strategy profile
for (p j,r j), a buyer response mapping from signals to
purchase probabilities, and a platform exposure policy
e(·) such that each agent best responds given beliefs and
constraints, and beliefs are consistent with the signal
structure. The exposure policy may be taken as exoge-
nous for the equilibrium characterization when focusing
on buyer and seller responses, or endogenous when the

platform is modeled as an optimizing principal [8]. This
section characterizes how disparities arise in the map-
ping from exposure to transactions and how they can
be decomposed into interpretable components.

Under the reduced-form independent-exposure ap-
proximation, transactions are linear in exposure:

Tj =
∫

λ (c)e j(c)ρ j(c)dc,

where ρ j(c) is the expected conversion probability when
shown. Disparities in Tj can arise from disparities in ex-
posure e j(c), disparities in conversion ρ j(c) given expo-
sure, or both. Define exposure-weighted average conver-
sion ρ̄ j =

∫
λ (c)e j(c)ρ j(c)dc∫

λ (c)e j(c)dc when the denominator is pos-
itive. Then Tj = E jρ̄ j where E j =

∫
λ (c)e j(c)dc is ex-

pected impressions. Group mean transactions satisfy

E[Tj | g] = E[E jρ̄ j | g],

and the difference ∆T (g,g′) can be decomposed by adding
and subtracting E[E j | g]E[ρ̄ j | g] terms. A useful decom-
position emphasizes three elements: group differences
in exposure, group differences in conversion, and group
differences in the covariance between exposure and con-
version. Write

E[Eρ̄ | g] = E[E | g]E[ρ̄ | g]+Cov(E, ρ̄ | g).

Then the disparity between groups can be expressed as
a sum of differences in these terms. This is not a causal
decomposition by itself, but it clarifies that even if aver-
age conversion rates are equal across groups, disparities
can arise if exposure is systematically allocated to lower-
converting sellers within one group, or if the platform
correlates exposure more strongly with predicted conver-
sion for one group than another because of differences
in prediction quality.
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12cml c c c
Specification Coef. on Group B Std. Error R-squared

(1) Match rate -0.071 0.011 0.24
(2) Conversion -0.038 0.008 0.31
(3) Log price -0.052 0.010 0.27

(4) Seller revenue -0.119 0.022 0.29
(5) Rating -0.086 0.017 0.18

Table 5. Regression estimates of group effects on outcomes, controlling for observables.

12cml c c c
Scenario Disparity in Match Rate Disparity in Revenue Platform Profit Index

Baseline -0.065 -0.118 1.00
Biased Matching -0.102 -0.176 1.07
Fairness (weak) -0.028 -0.051 0.98

Fairness (strong) -0.010 -0.018 0.94
Randomized Exposure -0.004 -0.012 0.89

Table 6. Trade-offs between disparity reduction and platform profit across policy scenarios.

Taste-based discrimination enters through δi(g) in
Ui j. If δi(g) is negative for a particular group for a
substantial mass of buyers, then ρ j(c) will be lower for
sellers in that group holding fixed q j, p j, and other fea-
tures. Even if the platform were to allocate exposure uni-
formly across groups, realized transactions would differ
[9]. Conversely, statistical discrimination enters through
µi j because buyers form different posteriors for sellers
of different groups. A simple parametric case illustrates
how statistical discrimination can mimic taste-based dis-
crimination in reduced-form outcomes. Suppose signals
are si j = q j+νi j, where νi j ∼N (0,σ2

g ) depends on group.
Suppose buyers have prior q j | g ∼ N (mg,τ2

g ). Then the
posterior mean is

µi j =
τ2

g

τ2
g +σ2

g
si j +

σ2
g

τ2
g +σ2

g
mg.

If mg differs across groups or if σ2
g differs, then two sell-

ers with the same realized si j can have different µi j and
hence different purchase probabilities. This difference
persists even if buyers are Bayesian and even if they
have no direct taste for group, because the group acts
as an informative tag under the buyer’s model of quality.
In an e-commerce context, such differences can emerge
if review systems are noisier for some sellers due to fewer
transactions, if return rates are measured with different
precision, or if seller verification differs.

Platform-mediated disparity enters through e j(c). Even
if the platform does not use group explicitly, differences
in features correlated with group can lead to systematic
exposure gaps. A useful representation is to model ex-
posure as the solution to a ranking optimization based
on a score v̂ j(c), the platform’s estimate of value from
showing j in context c. If the platform uses a softmax

allocation,

e j(c) = K
exp(λpv̂ j(c))

∑k exp(λpv̂k(c))
,

then small differences in scores can translate into large
differences in exposure when λp is large. If v̂ j(c) is
a prediction of conversion times margin, then group-
dependent prediction error can create group-dependent
exposure. A key point is that even unbiased prediction
error can create disparities when combined with nonlin-
ear allocation. Suppose v̂ j = v j +ε j with E[ε j | g] = 0 but
Var(ε j | g) differs across groups. Then Jensen-type effects
imply that E[exp(λpv̂ j) | g] depends on the variance of ε j.
This yields different expected exposure shares by group
even if true values v j are identically distributed, because
the allocation is convex in the score. In particular, if
one group has larger prediction variance, its sellers may
experience more extreme realizations and hence more
volatile exposure, and the average exposure can move
either direction depending on competitive interactions
and normalization across sellers [10].

Seller strategic response amplifies or dampens these
forces. In equilibrium, sellers anticipate how price and
effort affect exposure and conversion. If the platform
score depends on observed conversion, sellers may re-
duce price to increase conversion and hence increase ex-
posure, effectively engaging in a dynamic contest for
attention. If groups differ in marginal cost or in abil-
ity to reduce price, equilibrium can yield group differ-
ences in exposure even with identical buyer preferences
and identical platform algorithms. Formally, if the plat-
form score is v̂ j = ρ̂ j(p j −c j), then a seller with higher c j
may face a lower feasible score and thus lower exposure.
Group disparities then arise from cost differences rather
than discrimination per se, but the outcome remains a
disparity in matching.
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12cml c c c
Component Share of Total Gap Explanation Identification Source

Sorting patterns 0.32 Systematic matching of groups to different counterparties Buyer–seller fixed effects
Search frictions 0.21 Differential visibility and click-through Impression-level logs

Pricing response 0.18 Strategic price adjustment by sellers Price experiments
Rating dynamics 0.16 Path dependence in reputation signals Panel ratings data

Residual 0.13 Unexplained variation Model residuals
Table 7. Decomposition of the observed revenue gap between seller groups.

12cml c c c
Robustness Check Group Effect (Baseline) Group Effect (Check) Notes

Alternative group definition -0.119 -0.104 Clustered by region
Excluding outliers -0.119 -0.111 Top/bottom 1% dropped

Nonlinear controls -0.119 -0.123 Splines in tenure and rating
Hour-of-day FE -0.119 -0.115 Demand seasonality

Seller-only sample -0.119 -0.097 Excludes multi-homing sellers
Table 8. Robustness of estimated group revenue effect under alternative specifications.

To isolate discrimination-like components, it is useful
to define counterfactual equilibria. Consider a baseline
environment E with group-dependent taste parameters,
priors, and signal precisions. Define a counterfactual
environment E no-taste where δi(g) is replaced by a con-
stant independent of group while holding other primi-
tives fixed. The difference in outcomes between equi-
libria under E and E no-taste attributes a portion of dis-
parity to taste-based discrimination in the model. Sim-
ilarly define E no-stat where priors and signal structures
are equalized across groups, so that µi j does not de-
pend on group conditional on listing attributes. Fi-
nally define E policy-neutral where the platform exposure
policy is constrained to satisfy an equal-exposure con-
dition across groups for given contexts. Each counter-
factual requires solving a potentially different equilib-
rium because seller best responses change when exposure
changes, and buyer behavior changes when information
changes.

A useful analytical simplification is to linearize around
an equilibrium to obtain comparative statics. Let y de-
note a vector of endogenous outcomes including expo-
sures, prices, and conversions, and let ξ denote a vector
of primitives including group taste shifters, prior means,
and prediction noise parameters. Equilibrium satisfies
F(y,ξ ) = 0 for a system of equations capturing best re-
sponses and platform optimality conditions [11]. Under
regularity, local changes satisfy Dy =−(Fy)

−1Fξ Dξ . Dis-
parities are functions D(y) comparing group averages,
and their sensitivity to primitives can be expressed as
gradients. This formalism clarifies that disparity sen-
sitivity depends on the Jacobian of the equilibrium sys-
tem, which incorporates both direct effects and strategic
feedback. In particular, even if a group-related primitive
affects only buyer utility directly, it can induce changes
in seller pricing and platform allocation that magnify

the initial effect.
This section establishes that in a static environment,

disparate outcomes can arise from three distinct sources
that are observationally entangled: buyer-side tastes,
buyer-side inference under imperfect signals, and platform-
side allocation based on noisy prediction and nonlinear
ranking. The next sections introduce a dynamic learn-
ing model that makes these forces more persistent and
explores how platform objectives and constraints shape
the equilibrium disparity profile.

4. Algorithmic Learning, Feedback, and Path
Dependence

Platforms typically update ranking and recommenda-
tion models using behavioral data such as clicks, add-to-
cart events, purchases, and returns. Because the plat-
form controls exposure, the data used to train models
are endogenously generated. This endogeneity creates
a feedback loop: exposure affects behavior, behavior
updates predictions, and updated predictions affect fu-
ture exposure. Even if the platform’s learning rule is in-
tended to maximize relevance or revenue, the resulting
dynamics can converge to fixed points with persistent
group disparities. This section formalizes these dynam-
ics using a stochastic learning model and characterizes
conditions under which disparities amplify.

Let time be discrete t = 0,1,2, . . . [12]. For each con-
text c, the platform maintains a parameter vector θt
that maps listing features into a predicted value v̂ j,t(c) =
f (x j,c;θt). Exposure is chosen as a function of predicted
values, for example via a softmax allocation

e j,t(c) = K
exp(λpv̂ j,t(c))

∑k exp(λpv̂k,t(c))
.

Buyers respond according to true but unknown conver-
sion probabilities ρ j(c) that depend on latent quality,
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Figure 1. High-level structure of a two-sided platform where heterogeneous buyers submit queries, the platform ranking
policy maps buyer–seller–group features into match probabilities, and sellers from different groups receive unequal exposure.
Blue shading encodes group membership and exposure intensity.

price, and discrimination parameters. The platform ob-
serves outcomes y j,t(c) such as clicks or purchases for
exposed sellers. A common learning rule updates θt by
stochastic gradient descent on a loss function ℓ(θ), such
as negative log-likelihood of observed conversions under
a predictive model. The update is

θt+1 = θt −ηt∇θ ℓ̂t(θt),

where ℓ̂t is the empirical loss based on data collected at
time t and ηt is a step size.

The key feature is that the distribution of training
examples depends on exposure. Let X j,t denote the fea-
tures of an observation, including seller features and con-
text. The probability that seller j contributes data in
context c at time t is proportional to e j,t(c). If a seller re-
ceives low exposure, its data are sparse and the model’s
estimates for similar sellers may remain uncertain or bi-
ased due to regularization. If group membership corre-
lates with feature regions that are under-explored, then
one group may systematically experience poorer predic-
tion and lower exposure.

To analyze feedback, it is useful to consider a mean-
field approximation in which sellers are summarized by
group-specific feature distributions. Let ϕg(x) be the dis-
tribution of features for group g. Suppose true value is
v(x,c) = E[platform payoff | x,c] and the model class is
misspecified so that f (x,c;θ) approximates v with error
that depends on the density of training data in the re-
gion of (x,c). A simple representation sets the prediction
error variance inversely proportional to effective sample
size. Let ng,t(x,c) be the cumulative exposure-weighted
sample size for group g at feature point (x,c). Then the
expected squared error satisfies [13]

E
[
( f (x,c;θt)− v(x,c))2 | g

]
≈ σ2

ng,t(x,c)
+bg(x,c)2,

where bg captures systematic bias due to misspecifica-
tion or measurement error that may be group-dependent.
Because ng,t evolves with exposure, groups receiving more
exposure in relevant regions enjoy faster error reduction,
which further increases exposure if the allocation func-
tion rewards high predicted value with low uncertainty.

Exploration policies affect whether the system cor-
rects such disparities. If the platform uses purely ex-
ploitative ranking with large λp and minimal random-
ization, then early noise in v̂ can lock in winners. A
stylized dynamic illustrates this. Consider two represen-
tative sellers, one from group A and one from group B,
with identical true value v. The platform maintains es-
timates v̂A,t and v̂B,t updated from Bernoulli conversion
observations with noise. If exposure at time t is

eA,t =
exp(λpv̂A,t)

exp(λpv̂A,t)+ exp(λpv̂B,t)
,

then the expected difference in cumulative data depends
on the current estimate gap. Under small-step updates,
the estimate difference evolves approximately as

∆t+1 ≈ ∆t +ηt (eA,t ξA,t − eB,t ξB,t) ,

where ξg,t are zero-mean noise terms. Because the ex-
posure weights depend on ∆t , the process resembles a
self-reinforcing random walk. When λp is large, small
positive deviations in ∆t generate eA,t near 1 and eB,t
near 0, causing seller B to stop generating data, freez-
ing its estimate. In such regimes, the limiting exposure
share can be path dependent and sensitive to early noise.

Group disparities enter when early noise or initial es-
timates differ systematically across groups [14]. This can
happen if priors are initialized from historical data that
reflect past discrimination, or if measurement noise dif-
fers by group. Suppose initial estimates satisfy E[v̂A,0] =
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Figure 2. Sequential pipeline representation of buyer–seller matching. Queries and context features feed into a ranking
stage, which induces group-specific exposure distributions and downstream differences in acceptance and revenue. Feedback
loops from observed outcomes to policy updates create dynamic disparities over time.

v and E[v̂B,0] = v − δ0 because group B has fewer his-
torical observations and stronger regularization shrink-
age. Then even with exploration, the system may con-
verge to a fixed point with lower exposure for group B
unless exploration is sufficient to overcome the initial
disadvantage. The condition depends on the relation
between exploration intensity and the curvature of the
exposure function. In a continuous approximation, let
e(∆) = 1

1+exp(−λp∆) and let expected drift in ∆ be m(∆)
induced by differential learning speeds. If m(∆) is pos-
itive for ∆ > 0 and negative for ∆ < 0 with steep slope
at 0, then ∆ = 0 is stable and disparities dissipate. If
m(∆) has the opposite property, then ∆ = 0 is unstable
and the system diverges toward a group-favoring equi-
librium. Differential measurement noise can create such
drift because the group with lower noise learns faster
and thus accumulates advantages.

A second source of feedback comes from buyer beliefs
and review accumulation. Buyers often rely on aggre-
gated ratings, which themselves depend on past trans-
actions. If one group receives less exposure, it accumu-
lates fewer reviews, making its quality signals noisier.
In the Bayesian updating example, a higher σ2

g lowers
the weight placed on the signal and can depress posterior
means when prior mg is below the realized quality. Even
if priors are equalized, a noisier signal reduces the prob-

ability that a high-quality seller is recognized as such,
which lowers conversions and exposure [15]. This cre-
ates a coupled dynamic: exposure affects transactions;
transactions affect signal precision; signal precision af-
fects conversions; conversions affect exposure. A sim-
ple reduced-form recursion for group-level average signal
precision can be written as

σ−2
g,t+1 = σ−2

g,t +α E[Tj,t | g],

where σ−2 is precision and α captures how transactions
add information. If Tj,t is lower for group g at time t,
then precision grows more slowly, perpetuating conver-
sion gaps.

The joint dynamics can be studied via fixed-point
equations. Let Eg denote average exposure share for
group g in a given context, and let Ψg(E) denote the im-
plied average conversion rate given exposure-induced sig-
nal accumulation and learning. Then group-level trans-
actions satisfy Tg =EgΨg(E), and the platform allocation
rule implies E = Γ(v̂(T )), where v̂ depends on learned
parameters that are functions of data generated by T .
A fixed point satisfies E = Γ(v̂(EΨ(E))). Existence can
be established under continuity of the mappings, but
uniqueness may fail when the allocation is highly non-
linear. Multiple fixed points correspond to different long-
run disparity regimes.
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Figure 3. Stylized causal structure of the matching mechanism with group membership for buyers (Gb) and sellers (Gs),
latent attributes, score construction, and realized utilities. Dashed edges capture pathways through which platform
parameters or structural effects can introduce discriminatory dependence of scores and utilities on group membership.
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Figure 4. Bipartite representation of realized matches between buyers and sellers. Dense, high-weight edges indicate
frequent matches for sellers in the advantaged group, while sparse, dashed edges indicate infrequent matches for sellers in
the disadvantaged group, despite comparable presence on the platform.

An implication is that disparity reduction may re-
quire interventions that alter the learning and informa-
tion environment, not only the static allocation rule. Ex-
ploration, uncertainty-aware ranking, and debiasing pri-
ors can shift the system toward more symmetric fixed
points. If the platform uses an upper-confidence-bound
type rule, ranking by v̂+λuσ̂ , then sellers with higher un-
certainty can receive more exposure, which can mitigate
initial disadvantages caused by data sparsity. However,
if uncertainty itself is correlated with group, such rules
may increase exposure to disadvantaged groups but can
reduce short-run conversion and platform revenue. The
tradeoff depends on the discounting of future outcomes
and on whether increased exploration improves long-run
prediction sufficiently to offset short-run losses.

This section formalizes how endogenous data and
learning can produce persistent and path-dependent dis-
parities [16]. The next section embeds these dynam-
ics into the platform’s objective and characterizes con-
strained optimization approaches that target disparate
outcomes while accounting for equilibrium feedback.

5. Platform Optimization Under Fairness
Constraints

Platforms choose allocation policies under objectives that
may include revenue, user satisfaction proxies, and long-
run engagement. When disparate outcomes are a con-
cern, the platform may impose constraints or penalties
to limit exposure or transaction gaps across groups. Be-
cause the platform sits between buyers and sellers, it can
alter outcomes through exposure allocation and informa-
tion design, but it must account for strategic behavior
and for dynamic learning. This section models the plat-
form problem as constrained optimization and derives
conditions under which fairness constraints bind, how
they alter equilibrium, and how they interact with pre-
diction error and learning.

Let the platform objective in a given period be

W (e,S ) =
∫

λ (c)∑
j

e j(c)E [wi j(c) | S ,e]dc−Ω(e),

where wi j(c) is the platform’s per-impression payoff from
showing seller j to buyer i in context c. This payoff may
include expected commission revenue κ p jσ(Ui j), and
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Figure 6. Illustration of ranking positions under alternative platform policies. The baseline policy over-represents
advantaged sellers in top slots. A fair ranking reorders candidates to balance exposure while preserving within-group
relevance, whereas a reservation-style policy dedicates a fixed share of high-visibility positions to disadvantaged sellers.

can incorporate user satisfaction by including negative
terms for returns or complaints. The dependence on S
captures the fact that information affects buyer choices
and hence realized payoffs.

A fairness constraint can be imposed on group-aggregated
exposure or outcomes. One class of constraints targets
exposure parity within each context:

∫
e j(c)dFg( j | c) = πg(c)K for all g,c,

where Fg(· | c) is the distribution of sellers of group g eli-
gible in context c, and πg(c) is a target share, such as the
share of available sellers or a policy-specified benchmark.
This constraint enforces that expected impressions allo-
cated to group g in context c match the target [17]. An-
other class targets outcome parity, such as equalizing

transaction rates conditional on exposure:∫
λ (c)∑ j:g( j)=g e j(c)ρ j(c)dc∫

λ (c)∑ j:g( j)=g e j(c)dc
= ρ̄⋆(c) for all g,

where ρ̄⋆(c) is a common benchmark conversion rate.
This is generally harder to satisfy because ρ j(c) depends
on buyer preferences and information, not only on plat-
form decisions. A third class targets counterfactual par-
ity, requiring that outcomes be invariant to group un-
der a structural model of buyer behavior and signals,
effectively imposing equality in ∆Y (g,g′;q) for relevant
outcomes.

For tractability, consider a static constrained opti-
mization with exposure parity in a given context, sup-
pressing c. Let v j denote the platform’s value from
exposing seller j. The platform chooses e j to maxi-
mize ∑ j e jv j −Ω(e) subject to ∑ j e j = K, 0 ≤ e j ≤ 1, and
group constraints ∑ j∈g e j = πgK for each group g, where
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∑g πg = 1. Assume Ω(e) is convex, such as λr
2 ∑ j e2

j to
penalize concentration. The Lagrangian is

L =∑
j

e jv j−
λr

2 ∑
j

e2
j +ν

(
K −∑

j
e j

)
+∑

g
ηg

(
πgK − ∑

j∈g
e j

)
.

Ignoring bounds for the moment, first-order conditions
yield

e j =
1
λr

(
v j −ν −ηg( j)

)
.

Thus fairness constraints operate as group-specific shadow
prices ηg that shift effective values. Sellers in a constrained-
undersupplied group receive an exposure boost relative
to their value, while sellers in an oversupplied group re-
ceive a reduction. When bounds [0,1] bind, the solu-
tion becomes a truncated affine rule, which can be inter-
preted as a group-dependent reserve threshold on v j.

This characterization reveals a key interaction with
prediction error [18]. In practice, the platform observes
v̂ j rather than v j. The constrained solution based on
v̂ j implies realized welfare depends on the joint distribu-
tion of (v j, v̂ j) by group. If prediction error is larger for
one group, then enforcing exposure parity may allocate
impressions to lower true value sellers within that group,
reducing welfare more than anticipated. Conversely, if
prediction error is systematically biased against a group,
exposure parity can partially correct the bias by forc-
ing allocation toward that group, potentially increasing
both fairness and welfare relative to the unconstrained
biased allocation.

Dynamic considerations alter the optimal constraint
strength. Suppose the platform maximizes a discounted
sum ∑∞

t=0 δ tWt where Wt depends on current allocation
and on future prediction quality through learning. A
fairness constraint that increases exposure for underrep-
resented groups can increase the rate at which the plat-
form learns about those sellers, improving future predic-
tions and potentially increasing long-run welfare. This
creates a mechanism whereby fairness constraints can
be instrumental to better learning rather than purely
redistributive. A reduced-form dynamic objective can
be written as

Wt = ∑
j

e j,t

(
v j −

λr

2
e j,t

)
−λ f Φ(et),

where Φ measures disparity, such as ∑g(Eg −πgK)2, and
λ f is a penalty weight. The learning state evolves as
θt+1 = θt +H (et ,yt), where yt are outcomes. The op-
timal policy can be studied via dynamic programming,
but even without solving the full problem, one can an-
alyze how λ f affects fixed points by perturbation. In-
creasing λ f shifts the allocation toward target exposure
shares, which changes data collection and thus changes
the evolution of θt . The long-run effect on disparity can

be larger than the immediate effect because the learning
loop changes [19].

Information design provides an alternative lever. If
statistical discrimination arises because buyers have group-
dependent priors or because signals are differentially
noisy, the platform can alter what information is dis-
played to buyers to equalize posterior beliefs. Consider
again the Gaussian signal model. If the platform can
choose the noise level in the displayed signal by aggregat-
ing more information or by presenting standardized sum-
maries, it can reduce differences in σ2

g across groups. If
the platform can provide a calibrated score s̃ j that is an
unbiased estimator of q j with controlled variance, then
posterior means become less group-dependent. This can
reduce conversion disparities without changing exposure
directly. However, information design can also create in-
centives for sellers to game signals, and it can reduce the
informational content of idiosyncratic details valued by
buyers. In the model, such costs can be represented by
a constraint on mutual information between q j and the
displayed signal, or by a penalty term capturing suscep-
tibility to manipulation.

A particularly relevant constraint in practice is a
form of group-blindness, where the platform does not
condition directly on g but may condition on correlated
features. In the model, group-blindness corresponds to
restricting the policy class so that e j depends on x j and
context but not on g( j). Disparities can still arise be-
cause the distribution of x j differs across groups, and
because the mapping from x j to outcomes can be non-
linear. If the platform additionally imposes invariance
constraints, requiring that e j be insensitive to features
that act as proxies for g, the feasible set may shrink
considerably, potentially forcing the platform to ignore
informative signals [20]. The Lagrangian analysis above
clarifies that explicit group constraints introduce con-
trolled, interpretable adjustments, while proxy restric-
tions can introduce implicit distortions that are harder
to predict.

The constrained optimization perspective therefore
reframes discrimination analysis as a joint problem of
prediction, allocation, and equilibrium response. Dispar-
ity metrics correspond to constraints or penalties, and
the cost of reducing disparity depends on the structure of
buyer demand, the heterogeneity of sellers, and the qual-
ity of platform predictions. The next section focuses on
how these structural elements can be identified and esti-
mated from data, since empirical attribution of dispar-
ities to different mechanisms requires disentangling ex-
posure endogeneity, preference heterogeneity, and mea-
surement error.
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6. Identification and Structural Estimation
From Platform Data

Empirical analysis of disparate outcomes on e-commerce
platforms is challenging because key variables are en-
dogenously determined by the platform and by strategic
sellers. Exposure is not random, conversion depends on
unobserved quality and buyer heterogeneity, and seller
participation and pricing respond to expected exposure.
This section outlines an identification strategy within
the formal model, focusing on what assumptions and
data variations are needed to distinguish taste-based
discrimination, statistical discrimination, and platform-
mediated allocation effects. The goal is not to prescribe
a single estimator but to provide a structured mapping
from model primitives to observable moments.

Suppose the platform logs include impressions, posi-
tions, clicks, purchases, prices, listing attributes, and
potentially group labels for sellers. Let Ii jtc indicate
whether buyer i at time t in context c is exposed to seller
j, and let Yi jtc indicate whether a purchase occurs. The
observed purchase probability conditional on exposure
is

Pr(Yi jtc = 1 | Ii jtc = 1,x j, p j,c,g( j))=E [σ(Ui jtc) | Ii jtc = 1, ·] ,

where Ui jtc embeds posterior beliefs and taste shifters. A
naive regression of Y on group and controls conditional
on exposure can be biased because exposure itself selects
which sellers are shown and possibly to which buyers [21].
If the platform targets certain sellers to certain buyers,
then the exposed sample is not representative. Moreover,
even if conditioning on exposure, the set of competing
alternatives shown to the buyer affects choice, creating
a form of contextual endogeneity.

A structural approach begins by specifying a choice
model that maps latent utilities to observed choices given
an exposure set. If the platform shows a ranked list,
the model can incorporate position-dependent attention.
Let ri jtc denote the rank position of seller j for buyer i at
(t,c). A standard attention model multiplies utility by
an examination probability ψ(r), yielding an effective
utility ψ(r)Ui jtc. Then the probability of purchase from
seller j is

Pr(a = j | Litc) =
exp(ψ(ri jtc)Vi jtc)

1+∑k∈Litc exp(ψ(riktc)Viktc)
,

where Litc is the set of shown sellers and Vi jtc is system-
atic utility excluding the idiosyncratic shock. Group
enters through taste δi(g) and through beliefs µi j. Esti-
mation of taste-based discrimination requires variation
that changes the group of sellers shown while holding
other attributes fixed, or instruments that shift expo-
sure to different groups without directly affecting buyer
utility.

Randomized experiments provide the cleanest vari-
ation. If the platform runs an A/B test that perturbs

ranking weights, exploration rates, or fairness constraints,
then exposure variation induced by random assignment
can be used as an instrument. Let Zitc be an experi-
ment assignment that affects which sellers appear and
in what positions. Under exclusion, Z affects purchases
only through exposure and ranking, not directly through
buyer tastes. Then one can identify causal effects of
exposure on purchases by group and estimate whether
the conversion function differs across groups holding ob-
served features constant [22]. However, even with exper-
iments, distinguishing taste-based from statistical dis-
crimination requires additional structure because both
enter utility in similar ways.

One approach is to model beliefs explicitly and use
information variation. If the platform changes the infor-
mation displayed about sellers, such as hiding photos,
standardizing ratings, or altering badges, then one can
estimate how posterior beliefs respond. In the Gaus-
sian signal framework, changes that increase signal pre-
cision should increase the weight on observed signals
and reduce the influence of priors. If group disparities
shrink more under increased precision, this suggests a
statistical discrimination component. Formally, if pos-
terior mean is µ = ωs+(1−ω)mg with ω = τ2/(τ2+σ2),
then increasing precision raises ω and reduces the con-
tribution of mg. Observing how conversion differentials
respond to such changes identifies the role of group-
dependent priors versus taste shifters, because taste shifters
are not attenuated by signal precision in the same way.

Another approach uses buyer heterogeneity. If some
buyers are plausibly group-neutral in tastes, such as buy-
ers whose past behavior indicates no systematic prefer-
ence for group after controlling for price and quality,
then their behavior can be used to estimate belief-based
components. In the model, taste-based discrimination
corresponds to δi(g) varying across buyers. If one can
estimate a distribution of δi(g) using repeated choices,
then a component of group disparity can be attributed
to tastes [23]. However, identification relies on assump-
tions about the stability of preferences and on observing
enough variation in the choice sets.

Platform-mediated disparities require modeling the
exposure policy. Exposure is a function of predicted
value and constraints, which can be approximated by a
parametric scoring function. Suppose exposure proba-
bility is monotone in a score S jtc = ϕ(x j,c;β )+ ε jtc with
some noise from tie-breaking and exploration. If one can
recover the mapping from S to exposure, then one can
estimate whether the score function loads differently on
features correlated with group or whether prediction er-
rors are group-dependent. In practice, ranking models
can be complex, but one can treat the policy as a black
box and estimate marginal propensities: how much does
exposure change when a feature changes, conditional on
context. If the platform provides logged propensities
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for exploration, then inverse propensity weighting can
recover counterfactual outcomes under alternative expo-
sure rules.

A central challenge is selection on unobserved qual-
ity. Sellers with higher latent quality may be more likely
to survive or to invest in better fulfillment, and these dy-
namics can differ by group. In the static framework, la-
tent quality q j enters buyer utility and conversion. With-
out observing q j, controlling for observed proxies may
not be sufficient. A structural remedy is to treat q j as
a random effect and infer it from repeat outcomes such
as return rates, complaint rates, and long-run seller per-
formance, using a state-space model [24]. For example,
one can specify

q j,t+1 = q j,t +ζ j,t ,

where ζ j,t captures shocks, and link q j,t to observed post-
purchase outcomes that are less affected by exposure,
such as defect rates conditional on sale. This helps sep-
arate differences in conversion due to quality from dif-
ferences due to discrimination, though it relies on the
assumption that post-purchase outcomes are compara-
ble across groups.

Seller price endogeneity further complicates identi-
fication. If sellers in disadvantaged groups anticipate
lower exposure, they may set lower prices to compen-
sate, affecting observed conversion. Estimating buyer
discrimination without accounting for price endogeneity
can confound discrimination with strategic pricing dif-
ferences. Instrumenting for price using cost shifters or
platform fee changes can help. In the model, seller best
response satisfies a first-order condition

∂Π j

∂ p j
= Tj +(p j − c j)

∂Tj

∂ p j
= 0,

which implies a markup rule involving demand elasticity.
If one can estimate demand elasticity from experiments
or instruments, then one can recover implied marginal
costs and assess whether group price differences reflect
cost differences or differential market power induced by
exposure.

Once primitives are estimated, one can implement
the counterfactual decompositions defined earlier [25].
The key is to compute equilibrium outcomes under mod-
ified primitives, accounting for seller responses and plat-
form re-optimization. For example, setting δi(g) to a
constant yields counterfactual conversions, and re-solving
the platform allocation under the same objective yields
counterfactual exposure. Similarly, equalizing signal pre-
cision or priors yields counterfactual posteriors and con-
versions. Comparing these counterfactuals to the base-
line provides model-based attributions of disparity. Be-
cause these exercises can be sensitive to functional form,
robustness requires checking multiple specifications for
buyer choice, signal formation, and platform policy.

A practical concern is that group labels may be miss-
ing or noisy, or the platform may avoid collecting them.
The framework can still be applied by defining groups
via observable proxies, but then disparity metrics may
reflect proxy-defined partitions rather than protected
classes. Alternatively, one can focus on outcome-based
groupings, such as sellers with systematically lower rat-
ings due to sparse data, which can still capture struc-
tural disadvantage mechanisms without requiring demo-
graphic labels. The interpretation shifts from discrimi-
nation against a protected class to discrimination against
a segment defined by the platform’s information environ-
ment, but the analytical decomposition remains similar.

This section frames identification as the task of sep-
arating three intertwined mappings: the mapping from
seller characteristics to true value, the mapping from
signals and group to buyer beliefs and tastes, and the
mapping from predicted value to exposure. The next
section integrates these elements into a welfare analy-
sis that clarifies tradeoffs among efficiency, fairness, and
incentives, and that helps interpret why certain interven-
tions may succeed or fail in reducing disparate matching
outcomes [26].

7. Welfare, Incentives, and Equilibrium
Effects of Interventions

Reducing disparate outcomes is not only a matter of
reallocating exposure; interventions can alter buyer sur-
plus, seller incentives, and long-run market composition.
This section evaluates interventions within the model
by defining welfare objects, describing how interventions
propagate through equilibrium, and characterizing con-
ditions under which disparities decline without large dis-
tortions. The analysis remains neutral in the sense that
it does not assert a single welfare criterion, but it for-
malizes several relevant metrics.

Let buyer i in context c obtain expected surplus from
the choice set induced by exposure. Under a logit model
with outside option utility normalized to zero, expected
surplus is proportional to the log-sum-exp term. If the
shown set is L with position-dependent attention, then
expected surplus is

CSitc =
1
λu

log

(
1+ ∑

j∈L

exp(ψ(ri jtc)Vi jtc)

)
,

where λu is the scale parameter of idiosyncratic shocks.
Platform revenue can be modeled as commissions plus
advertising. Seller surplus is profit Π j. Total surplus
can be defined as the sum of buyer surplus, seller sur-
plus, and platform profit, with the understanding that
transfers such as commissions can be netted out depend-
ing on the perspective.

An exposure parity constraint shifts the allocation
away from the unconstrained optimum. In the static
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convex-regularized allocation, the welfare loss can be ap-
proximated using the shadow prices ηg [27]. Suppose
the unconstrained solution yields group exposure shares
E(0)

g and the constrained solution enforces E(F)
g = πgK.

Under quadratic regularization, the welfare difference is
approximately

W (0)−W (F) ≈ λr

2 ∑
g

(
E(0)

g −πgK
)2

·χg,

where χg captures the curvature of the value distribution
within group g and how rapidly marginal value declines
as exposure is reallocated. This expression is schematic,
but it emphasizes that welfare costs are smaller when
the marginal value gaps between groups are small, or
when the unconstrained allocation already approximates
the target shares. When prediction bias drives the un-
constrained allocation away from efficient exposure, the
sign of the welfare change can reverse, because the un-
constrained solution may be suboptimal relative to true
values.

Interventions that alter information rather than ex-
posure can have different welfare effects. If statistical
discrimination arises because buyers underweight infor-
mative signals for a group due to low precision, improv-
ing signal precision can raise both buyer surplus and
seller outcomes for that group. However, information de-
sign can reduce buyer ability to match on idiosyncratic
preferences if signals are overly standardized. A formal
way to capture this is to decompose seller quality into a
common component valued by all buyers and an idiosyn-
cratic match component. Let q j = qcommon

j +qmatch
i j . If the

platform reveals a signal primarily about qcommon, it can
reduce uncertainty about general reliability while leav-
ing match quality uncertain. This can increase overall
conversion if reliability is a bottleneck, but it can reduce
buyer surplus if match quality drives satisfaction. The
welfare impact depends on which component dominates
and on whether idiosyncratic match quality is correlated
with group [28].

Exploration policies are a third class of interventions.
Increasing exploration, such as injecting randomization
into ranking, can reduce disparities arising from data
sparsity by ensuring that underexposed sellers generate
observations. The cost is a reduction in short-run effi-
ciency because some impressions go to lower-predicted-
value sellers. The long-run benefit is improved estima-
tion and potentially more accurate targeting. In a dis-
counted setting, exploration is beneficial when the value
of information outweighs the immediate loss. The condi-
tion can be expressed in terms of the expected improve-
ment in prediction quality. If the expected reduction in
squared error from an additional observation is ∆MSE
and the value function is concave in error, then explo-
ration is more attractive when ∆MSE is larger, which is
typically true for under-sampled groups. This implies

that exploration targeted toward disadvantaged groups
can be justified even under a purely revenue-oriented
objective if it accelerates learning.

Seller incentives respond strongly to exposure rules.
If fairness constraints guarantee a baseline exposure share
for a group, sellers in that group may invest less in qual-
ity or service if marginal exposure becomes less sensitive
to their effort. In the model, this corresponds to a re-
duction in ∂E j/∂ r j induced by the constraint. Seller
optimal effort satisfies [29]

(p j − c j)
∂Tj

∂ r j
=C′

j(r j).

Since Tj depends on exposure and conversion, any inter-
vention that flattens the exposure response reduces the
marginal benefit of effort. This incentive effect can par-
tially offset disparity reduction if lower effort reduces
true quality and conversion. Conversely, if disadvan-
taged groups face higher marginal costs of effort due to
structural constraints, a guaranteed exposure floor can
improve entry and encourage investment by reducing
risk. Which direction dominates depends on the cur-
vature of C j and on how constraints are implemented.
A soft penalty on disparity may preserve marginal in-
centives better than a hard constraint by allowing high-
performing sellers within a disadvantaged group to still
gain exposure.

Market composition effects are particularly relevant.
Sellers decide whether to enter based on expected profit,
which depends on anticipated exposure and conversion.
If a group has systematically lower exposure, marginal
sellers in that group may not enter, reducing variety and
potentially reinforcing buyer priors that the group has
fewer high-quality sellers. An intervention that increases
exposure can increase entry, which can raise competition
and potentially lower prices, benefiting buyers. How-
ever, increased entry can also reduce profits for incum-
bent sellers and change the distribution of quality. In
equilibrium, these composition effects can either reduce
or increase measured disparities depending on whether
new entrants are high or low quality [30]. A structural
counterfactual must therefore solve for entry decisions,
not only for allocations among existing sellers.

A formal way to capture entry and composition is
to define a group-specific distribution of potential sellers
with types τ determining costs and potential quality. Let
a seller of type τ in group g have profit Π(τ,g) under a
given policy. Entry occurs if Π(τ,g) ≥ 0. The measure
of active sellers in group g is then

Mg =
∫

1{Π(τ,g)≥ 0}dHg(τ),

where Hg is the type distribution. Disparities in ob-
served outcomes per seller can shift simply because the
set of active sellers changes. For instance, increasing
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exposure to a disadvantaged group can attract lower-
quality entrants, reducing average conversion even as
total sales increase. Interpreting such changes requires
conditioning on latent type or using welfare measures
that account for entry.

Interventions can also be framed as mechanism de-
sign problems [31]. The platform chooses exposure and
information to maximize an objective subject to incen-
tive compatibility for sellers and possibly participation
constraints. If sellers can manipulate observable fea-
tures to appear high-quality, then information policies
must be robust. Manipulation can be modeled by al-
lowing sellers to choose a reported feature x̃ j at a cost
increasing in deviation from true x j. The platform score
depends on x̃ j, and the equilibrium includes a manipula-
tion strategy. In such environments, fairness constraints
based on x̃ j can be gamed, potentially shifting benefits
away from intended groups. Designing constraints in
terms of outcomes that are harder to manipulate, such
as verified fulfillment metrics, can reduce gaming but
may increase measurement disparities if verification is
easier for some groups.

Finally, disparate outcomes can be evaluated under
different normative criteria. Exposure parity is one cri-
terion, conversion parity is another, and parity condi-
tional on latent quality is yet another. Each criterion im-
plies different interventions and different welfare impli-
cations. For example, enforcing equal transactions per
seller across groups may require allocating more expo-
sure to lower-converting sellers, which can reduce buyer
surplus if it increases search costs or reduces match qual-
ity. Enforcing parity conditional on latent quality is
closer to a notion of equal treatment, but it requires
strong assumptions and measurement of quality. In the
model, these criteria correspond to different constraints
on the mapping from q j to outcomes.

The welfare and incentive analysis underscores that
interventions operate through multiple channels: imme-
diate reallocation of attention, long-run learning effects,
seller effort and entry responses, and changes in buyer
information. Disparity reduction is therefore an equi-
librium problem, and evaluating policies requires spec-
ifying which outcomes matter and over what horizon
[32]. The conclusion summarizes the main analytical
implications and clarifies how the formal framework can
be used to interpret observed disparities on two-sided
e-commerce platforms.

8. Conclusion
This paper presented a formal framework for analyz-
ing disparate outcomes in buyer–seller matching on two-
sided e-commerce platforms where exposure and infor-
mation are institutionally mediated through ranking and
recommendation policies. The model treats exposure as
an allocative control that determines which sellers enter

buyers’ consideration sets and combines this with buyer
decision-making under imperfect information and with
seller strategic responses in pricing, effort, and partici-
pation. Discrimination is represented through three dis-
tinct but interacting mechanisms: taste-based discrimi-
nation captured by group-dependent utility shifters, sta-
tistical discrimination captured by group-dependent pri-
ors and signal precision that influence posterior beliefs,
and platform-mediated discrimination captured by ex-
posure rules based on noisy predictions and nonlinear
allocation. Within a static environment, disparate out-
comes can arise from differences in exposure, differences
in conversion conditional on exposure, and differences
in how strongly exposure is correlated with conversion,
with prediction error variance and bias playing central
roles when allocation is convex in predicted value.

The framework also formalized dynamic feedback loops
created by algorithmic learning on endogenously gener-
ated data. Under exploitative ranking and limited ex-
ploration, small initial differences in estimates or data
availability can persist and, in some regimes, amplify
through path dependence, yielding group-asymmetric
fixed points even when underlying seller quality distri-
butions are similar. This dynamic perspective clarifies
why disparity diagnostics based solely on contemporane-
ous allocation may miss the role of historical data and
learning rules, and why interventions that alter explo-
ration, uncertainty handling, or information disclosure
can have long-run effects that differ from their short-run
impact.

The platform optimization analysis showed that fair-
ness constraints can be represented as shadow prices
that shift effective values by group, and that welfare
effects depend on the accuracy of value predictions, the
curvature of the allocation rule, and equilibrium seller re-
sponses. The identification discussion emphasized that
attributing disparities to tastes, beliefs, or platform pol-
icy requires exogenous variation in exposure or informa-
tion and careful modeling of selection on unobserved
quality and of endogenous pricing and entry. Overall,
the formalism provides a structured way to reason about
how disparities emerge from the interaction of prefer-
ences, information, prediction, and allocation, and how
design choices shift outcomes across groups while affect-
ing efficiency, incentives, and market composition [33].
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