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Abstract
This paper explores the design and justification of explainable models for ranking search results in situations
where knowledge base queries are ambiguous. Ambiguity often arises when user queries contain limited
context, leading to multiple plausible interpretations within large-scale knowledge repositories. The objective
is to develop strategies that systematically identify and rank relevant records while providing transparent
rationales for why certain results appear in higher positions. Our approach merges algorithmic ranking methods,
intuitive interpretability components, and structured knowledge base representations to enhance user trust
and understanding of the retrieval process. We examine the interplay between latent semantic structures,
data-driven features, and explicit logical constraints that can reconcile ambiguous query terms. The key elements
we discuss include the integration of domain-agnostic feature extraction mechanisms, the incorporation of
human-understandable rules for interpretability, and the formal modeling of query-to-result relationships. This
research expands on foundational work in semantic search and explainable artificial intelligence by focusing
on methods prevalent before and around 2019, highlighting the methodological gaps that remain in rendering
accurate but justifiable rankings. We conduct an in-depth analysis of the interplay between uncertainty in
query interpretation and the algorithmic processes that prioritize relevant knowledge base entries. Our findings
aim to advance the creation of robust, interpretable ranking mechanisms that address both performance and
user-oriented transparency in search systems.
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1. Introduction
Ambiguous knowledge base queries represent a persistent
challenge within the domain of information retrieval [1]. When
a user initiates a search request but provides minimal context
or uses polysemous terms, it can be difficult for an automated
system to identify the specific subtopic or concept area in-
tended by the user [2]. The problem intensifies in large-scale
knowledge bases, where concept overlap and varied terminol-
ogy usage often lead to multiple plausible answer sets. Con-
ventional ranking algorithms frequently maximize relevance
based on statistical features while overlooking the necessity of
detailed justifications, especially crucial in professional and
high-stakes environments such as medical, legal, or scientific
research settings [3]. The capability to articulate the reasoning
behind search result ordering is thus essential for fostering
user trust and mitigating the risks of misinformation.

The ambiguity inherent in query formulation stems from
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both linguistic complexity and domain-specific challenges
[4]. In natural language, homonyms, synonyms, and syntactic
variations contribute to multiple potential interpretations of
a single query [5]. Additionally, in specialized fields, termi-
nological inconsistency further complicates retrieval efforts.
For instance, in the biomedical domain, the term “cold” could
reference a viral infection, a physiological temperature state,
or a cryogenic preservation method [6]. Knowledge bases
populated with heterogeneous datasets from multiple sources
exacerbate this issue by encoding overlapping yet distinct
representations of similar concepts. Without appropriate dis-
ambiguation mechanisms, retrieval systems risk returning an
extensive yet imprecise set of results, thereby increasing cog-
nitive load on the user to manually filter and interpret the
information. [7]

Another complicating factor is the evolving nature of
knowledge and the contextual dependencies of queries. Tem-
poral shifts in meaning, newly introduced terminology, and
variations in conceptual framing across disciplines all con-
tribute to inconsistencies in query interpretation [8]. Legal
documents, for example, frequently undergo amendments that
modify the scope of key terms, leading to discrepancies in
how past and present documents relate to a given query [9].
Similarly, scientific paradigms evolve, and terms that were
once definitive may acquire new connotations over time. In
dynamic knowledge bases, ensuring that retrieval mechanisms
adapt to these changes without introducing inconsistencies
remains an ongoing challenge. [10]

Furthermore, the structural characteristics of knowledge
bases significantly impact the effectiveness of disambiguation
strategies. Hierarchical taxonomies, ontological mappings,
and graph-based knowledge representations all offer different
mechanisms for structuring information; however, they also
introduce constraints in how ambiguous terms are resolved
[11]. Some systems rely on explicit entity linking, where
terms are mapped to predefined concepts in an ontology, but
this approach can be limited when user queries contain novel
or underrepresented terms. Others incorporate statistical co-
occurrence models, which infer meaning based on contextual
usage patterns, but such models may fail to capture nuanced
semantic relationships that require deeper contextual under-
standing. [12]

Another pressing concern is the interaction between user
intent and query ambiguity [13]. Users may express a query
with an implicit expectation that the system understands their
intended meaning, often relying on prior knowledge or domain
expertise that the retrieval system does not possess. This is
particularly evident in technical domains where expert users
employ shorthand notation or field-specific jargon [14]. In
contrast, non-expert users might inadvertently use broad or
vague descriptors, further complicating disambiguation. In
both cases, there exists a fundamental gap between how users
conceptualize their queries and how retrieval systems process
them [15]. Bridging this gap necessitates techniques that
dynamically infer user intent based on additional contextual

cues, such as search history, user profile data, or interactive
clarification mechanisms.

Moreover, ambiguous queries pose a significant challenge
in high-stakes applications where information retrieval accu-
racy is critical [16]. In medical knowledge bases, for instance,
a query for “diabetes treatment” could yield a wide array of
results ranging from pharmaceutical interventions to lifestyle
modifications and experimental therapies [17]. Misinterpre-
tation or misranking of results in such contexts could lead
to misinformation, potentially influencing medical decisions
with adverse consequences. Legal and regulatory databases
similarly demand precision, as ambiguous retrieval results
could affect case law interpretations or compliance assess-
ments [18]. In scientific research, retrieval ambiguity may
lead to improper citation of sources, misalignment of hypothe-
ses, or duplication of efforts due to incomplete awareness of
prior work.

The challenge is further compounded by differences in
retrieval performance across various knowledge base archi-
tectures [19]. Traditional keyword-based search engines rely
heavily on term-matching heuristics, which are susceptible to
ambiguity in polysemous terms. Semantic search models, in
contrast, attempt to map queries to conceptual representations,
yet they too face challenges when dealing with multi-faceted
or overlapping meanings [20]. Graph-based knowledge bases
leverage structured relationships between entities, but they
depend on the completeness and accuracy of the underlying
ontology, which may not always reflect the most current or
comprehensive state of knowledge [21]. Thus, the efficacy of
retrieval depends on both the technical framework employed
and the richness of the knowledge base itself.

Additionally, the problem of ambiguous knowledge base
queries extends beyond individual retrieval instances and influ-
ences broader aspects of knowledge management [22]. When
users frequently encounter ambiguous or misleading results, it
erodes confidence in the system, leading to reduced adoption
and reliance on alternative sources that may lack credibility. In
enterprise environments, poor retrieval performance can hin-
der decision-making processes, reduce operational efficiency,
and contribute to knowledge silos where employees resort to
informal or localized repositories of information rather than
centralized, organization-wide knowledge bases [23, 24]. In
research and academic settings, inadequate disambiguation
can distort literature reviews, skew citation patterns, and im-
pede interdisciplinary collaboration by failing to align related
concepts across fields.

Table 1 provides illustrative examples of ambiguous queries
across different domains, highlighting the challenges they
pose and the potential implications of incorrect retrieval.

Given these complexities, the necessity of refining query
interpretation mechanisms extends beyond simple keyword
expansion or lexical disambiguation [25]. Effective handling
of ambiguous queries demands an integrated approach that
considers linguistic variation, contextual dependencies, user
intent inference, and domain-specific knowledge representa-
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Table 1. Examples of Ambiguous Queries and Their Contextual Challenges

Query Potential Interpretations Contextual Challenges
“Cold” Viral infection, temperature state,

cryogenic preservation
Requires domain knowledge to dif-
ferentiate medical vs. physical
meaning

“Apple” Technology company, fruit, record
label

Disambiguation needed based on
user intent (e.g., tech-related search
vs. nutrition-related search)

“Jaguar” Animal, luxury car brand, sports
team

Context-dependent retrieval neces-
sary to avoid irrelevant results

“Mercury” Element, planet, automobile brand,
Roman deity

Knowledge graph linking or contex-
tual keyword expansion needed

“Java” Programming language, Indonesian
island, type of coffee

Must infer from surrounding text or
user history

tions [26]. It also requires advancements in explainability to
ensure that retrieval outputs can be understood, trusted, and
refined based on user feedback. Table 2 summarizes key per-
formance metrics that must be considered when evaluating
the effectiveness of retrieval systems in handling ambiguous
queries.

The increasing reliance on large-scale knowledge bases
across disciplines necessitates continual refinement of infor-
mation retrieval methodologies [27]. As knowledge repos-
itories grow in size and complexity, the risks posed by am-
biguous queries become more pronounced, demanding robust
strategies to ensure accurate and transparent retrieval. The
future of information retrieval hinges not only on improving
precision but also on fostering user trust through intelligible
and context-aware search mechanisms. [28]

Traditional approaches to ranking documents in informa-
tion retrieval involve constructing relevance scores by compar-
ing query terms to index representations. Early strategies re-
lied on term frequency-inverse document frequency (TF-IDF)
techniques, which provided numerical estimates of term im-
portance [29]. More recent approaches, emerging before 2019,
leverage neural embeddings and structured knowledge graph
embeddings to capture semantic relationships [30]. However,
most methods in practice still provide a ranking output with
limited or no interpretability, leaving practitioners and end-
users uncertain about the mechanics behind retrieval decisions.
Specifically, while neural embedding models may improve
retrieval performance, their latent representations are opaque,
leading to inherent difficulties when attempting to provide
interpretable rationales. [31]

In ambiguous query scenarios, the situation is further com-
plicated by the fact that multiple potential senses, context
angles, or subdomains of a query term could be equally valid.
Without sophisticated disambiguation techniques, a system
might either return a heterogeneous set of results or fail to
address certain interpretations altogether [32]. This dual risk
highlights the necessity of robust, explainable frameworks
that effectively handle the multiple candidate meanings of a
single query. Such frameworks must incorporate interpretable

logic structures to guide users toward correct interpretations
of system outputs, especially if query expansions or concept
disambiguation steps are performed automatically. [33]

Effective explanation mechanisms should extend beyond
merely attributing a query’s result to the presence of match-
ing keywords [34]. Instead, they should elucidate the logi-
cal connections and semantic relationships that cause some
documents, or entities, to appear more relevant than others.
By aligning the internal representation of content with inter-
pretable logic rules, retrieval systems can transparently reveal
the steps taken to rank and filter the search results [35]. This
not only informs end-users of how a particular document
was selected, but also allows researchers and developers to
diagnose potential pitfalls and biases in the retrieval pipeline.

In this paper, we undertake a comprehensive exploration of
how interpretability and explainability can be systematically
introduced into the ranking pipeline for ambiguous knowl-
edge base queries [36]. We examine the roles of structured
embeddings, symbolic logic, and uncertainty quantification
in reconciling multiple possible interpretations, focusing on
design choices that support traceable rationales. Specifically,
we present approaches for handling uncertain or conflicting
evidence, discuss the interplay between high-dimensional fea-
ture representations and symbolic constraints, and explore
the architectural frameworks that integrate these components
into an operational pipeline [37]. Throughout the discussion,
we assume a broad range of application domains, such as
scientific literature indexing, enterprise data warehouses, and
large encyclopedic knowledge graphs, each requiring robust
solutions for ambiguous queries [38, 39].

The remainder of this paper is organized into four main
sections. First, we provide a background of related efforts
addressing ambiguity resolution in knowledge base search
[40]. Next, we detail our methodological framework, pre-
senting core formal statements and data structures that en-
able explainable ranking. We then discuss empirical insights
and illustrative scenarios where these methods have been
tested, describing the metrics and assessment strategies used
for performance evaluation [41]. Finally, we examine the
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Table 2. Key Performance Metrics for Evaluating Retrieval Systems on Ambiguous Queries

Metric Description
Disambiguation Accuracy Measures how often the system correctly identifies the intended meaning

of a query.
Relevance Precision Evaluates the proportion of retrieved results that are contextually relevant

to the user’s intended query meaning.
Explainability Score Assesses the system’s ability to provide human-understandable justifica-

tions for retrieved results.
User Correction Rate Tracks how frequently users need to refine their query or manually adjust

search parameters due to ambiguity.
Query Resolution Time Measures the time required for the system to disambiguate and return

meaningful results.

broader implications, including potential limitations, practi-
cal deployment concerns, and the importance of standardized
interpretability benchmarks. In the concluding section, we
summarize our findings and propose directions for future work
on interpretable ranking for ambiguous queries. [42]

2. Background and Related Efforts
Research on handling ambiguous queries in knowledge bases
and information retrieval systems spans multiple disciplines,
including semantic web technologies, natural language pro-
cessing, machine learning, and logic-based reasoning frame-
works [43]. Since the early stages of information retrieval,
ambiguity has been a recognized obstacle, prompting efforts
to refine indexing and search algorithms. The classical vector
space model, as well as probabilistic retrieval approaches,
sought to compute relevance scores based on lexical overlap
and document distributions [44]. Despite the documented
success of these models, they provided limited means of ex-
plaining why certain documents ranked higher than others,
restricting the diagnostic capabilities available to both system
designers and end-users.

The field witnessed a growing interest in embedding-based
techniques that mapped query and document content into
dense vector spaces [45]. Word2Vec, GloVe, and other neu-
ral embedding frameworks provided semantic representations
capable of capturing contextual relationships. Extensions of
these approaches led to knowledge graph embeddings, which
allowed for structured representations of entities and their
relations [46]. Although these techniques improved retrieval
performance, their interpretability was typically not a primary
focus [47]. Researchers recognized that while embedding-
based algorithms could address certain forms of lexical ambi-
guity by inferring semantic distance, the latent nature of these
models hindered any transparent explanation process.

Simultaneously, the semantic web community made strides
in employing ontology-based queries, leveraging formal logic
representations such as Description Logics [48]. Query lan-
guages like SPARQL provided a means to pose structured
queries against knowledge graphs, yet these methods were
still limited when user queries were vague or under-specified.
To address such gaps, some efforts combined ontology-based

reasoning with query expansion strategies driven by lexical
resources (for instance, synonym lists and taxonomic hierar-
chies) [49]. Although these approaches improved retrieval
coverage, the question of how to systematically communicate
the chosen expansion paths or disambiguation decisions to
non-expert users remained unresolved.

Explaining result rankings involves not only clarifying
the source of ambiguities but also exposing the internal rea-
soning used by the system [50]. The field of explainable
artificial intelligence, especially in machine learning contexts,
witnessed notable progress with techniques that highlight in-
fluential features in classification and regression tasks [51].
Methods such as Layer-Wise Relevance Propagation (LRP),
Local Interpretable Model-Agnostic Explanations (LIME),
and gradient-based saliency maps provided ways to measure
local feature contributions. Yet, these methods were primarily
suited to classification problems and did not directly address
the unique challenges of ranking tasks, especially when the
queries themselves were ambiguous. [52]

An additional strand of research pertinent to interpretabil-
ity is the formalization of logic-based explanation frameworks.
In these paradigms, a user might receive an explicit logical
derivation or proof for why a particular result is relevant [53].
In knowledge representation, some investigators introduced
justification systems for ontology-based queries, generating
minimal sets of axioms or inference chains that support a
query result. However, these were often geared toward do-
main experts capable of parsing logical constructs, leaving
open questions about how to adapt the same clarity to broader
user bases and large-scale, multi-domain knowledge bases.
[54]

In parallel, user studies in information retrieval indicated
that trust in system outputs significantly increases when users
can ascertain the rationale behind the ranking [55]. Thus,
there is a strong motivation for bridging the gap between ro-
bust, high-performance retrieval techniques and transparent,
intelligible explanations. Advances in probabilistic and fuzzy
logic-based frameworks offered partial solutions, enabling
some measure of uncertainty quantification [56]. Still, am-
biguous queries complicate even these methods, as multiple
plausible inferences might exist for different interpretations
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of the query.
In summary, while many relevant lines of research have

contributed building blocks—ranging from advanced seman-
tic embeddings to logic-based explanations—the integration
of these components into a coherent, unified approach for am-
biguous queries remains a challenge [57]. A major objective
in the proposed work is to address this gap by designing an
end-to-end pipeline that provides understandable justifications
for search result rankings. This pipeline would incorporate
modern data-driven embeddings, symbolic representations,
and model-agnostic explanation layers, tailored specifically
for the disambiguation problem in knowledge base retrieval
tasks. [58]

3. Methodological Framework
The proposed framework for delivering explainable rankings
in the context of ambiguous queries rests on three key compo-
nents: a structured representation of knowledge, a multi-phase
retrieval algorithm, and an interpretability layer grounded in
formal logic [59]. Central to this methodology is the as-
sumption that knowledge base entities can be represented by
vectors in a semantic embedding space and simultaneously be
described by symbolic annotations that reflect domain-specific
or general ontological constraints. Such dual representations
facilitate both broad coverage of potential ambiguities via
data-driven techniques and explicit reasoning over definitional
constraints. [60]

3.1 Representation of Entities and Queries
Let E denote the set of entities in the knowledge base. Each
entity e ∈ E is associated with two forms of representation:

e 7→
(
v(e),σ(e)

)
where v(e)∈Rd is a vector embedding capturing semantic

information, and σ(e) is a symbolic descriptor containing
attributes, relevant ontological classes, and relationships. For
instance, an entity representing a scientific article might have
v(e) derived from distributed text representations, while σ(e)
enumerates authors, keywords, or associated concepts.

Similarly, an incoming user query q can be represented
by:

q 7→
(
v(q),σ(q)

)
where v(q) is a vector representation, often computed by

aggregating or encoding the user’s query text, and σ(q) is a
partially formed symbolic descriptor. In ambiguous queries,
σ(q) may be incomplete or contain placeholders indicating
uncertain aspects of the query’s meaning. [61]

3.2 Retrieval Algorithm
The retrieval process proceeds in two stages, aiming first to
capture all potentially relevant entities and then to refine this
list based on disambiguation signals: [62, 63]

Stage 1: Broad Candidate Selection A broad set of
candidate entities C ⊂ E is selected by comparing v(q) to
v(e) for each entity. A common approach is to compute a
similarity score using the cosine distance, or a bilinear form
v(q)⊤Mv(e) for some learnable matrix M. Entities whose
similarity score exceeds a threshold θ form the candidate set
C .

C = {e ∈ E | sim(v(q),v(e))≥ θ}

Stage 2: Disambiguation-Guided Ranking For each
candidate e ∈ C , the symbolic representations σ(q) and σ(e)
are used to refine the ranking. Logic rules capture interpretive
constraints, such as:

Γ :
(
σ(q),σ(e)

)
|= τ(q,e)[64]

where τ(q,e) is a statement indicating how well e matches
the intended meaning of q. Possible rules can include hier-
archical constraints, entity-type matching, or specialized do-
main constraints [65]. Each rule in Γ is assigned a weight wi
indicating its importance. The total symbolic compatibility
score is:

Scoresym(q,e) =
k

∑
i=1

wi ·1{γi ∈ Γ∧γi(σ(q),σ(e)) = true}

The final ranking metric for each candidate combines the
embedding-based similarity and symbolic compatibility: [66]

RankScore(q,e) = α · sim(v(q),v(e))+β ·Scoresym(q,e)

where α and β are hyperparameters [67]. The ranked
list is then generated by sorting C in descending order of
RankScore. In ambiguous scenarios, the symbolic checks
help discriminate among multiple plausible meanings of the
query.

3.3 Interpretability Layer
The interpretability component is designed to elucidate the
role of both the embedding similarity and the logical con-
straints in shaping final rankings [68]. We introduce a func-
tion:

Λ(q,e) = {(r,cr) | r ∈ Γ,cr ∈ {0,1}}

which enumerates whether each rule r in Γ was satisfied
(cr = 1) or not (cr = 0) for the query-entity pair [69]. This set
indicates precisely which symbolic conditions contributed to
a high rank. In addition, a subfunction: [70]

Θ(v(q),v(e)) = {δ | δ = sim(v(q),v(e))}
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exposes the embedding-based similarity score [71]. The
explanation for why e was ranked in a particular position can
thus be formulated as:

Ξ(q,e) =
〈

Θ(v(q),v(e)),Λ(q,e)
〉

The system can present Ξ(q,e) either as a short textual
summary or as a structured justification, depending on the
user interface [72]. In essence, Ξ clarifies how the embedding-
based similarity and the relevant logic rules mutually influence
the final ranking.

3.4 Logic Statements and Example Rules
To illustrate how logic statements might be employed, con-
sider a scenario in which a query references an ambiguous
term like “jaguar,” which could refer to an animal or a vehicle
brand [73]. We define a logic statement:

IsAnimal(σ(e))∧NotVehicle(σ(e))⇒AnimalContextScore

and

IsVehicle(σ(e))∧NotAnimal(σ(e))⇒VehicleContextScore

The user’s query may provide partial signals about the
context (for instance, mention of species, environment, or me-
chanical attributes) [74]. Those signals are encoded in σ(q)
[75]. If σ(q) strongly correlates with the concept “species,”
then the rule IsAnimal(σ(e))∧NotVehicle(σ(e)) might have
a higher weight wanimal . Conversely, if the textual represen-
tation of the query suggests a mechanical context, the rule
IsVehicle(σ(e))∧NotAnimal(σ(e)) would be more relevant.
By enumerating which rules were triggered, the system con-
veys to users that it considered the animal sense or the vehicle
sense, thereby explaining the final ranking.

4. Empirical Evaluation and Illustrative
Scenarios

Evaluating the proposed framework involves two main com-
ponents: measuring how effectively the system handles am-
biguous queries (disambiguation performance) and assessing
the interpretability or explainability of the ranking decisions
[76]. We outline below a prototypical procedure for such
an empirical evaluation, along with simplified scenarios to
illustrate the outcomes.

4.1 Metrics for Disambiguation and Ranking Quality
We adopt standard ranking metrics—such as Mean Recipro-
cal Rank (MRR), Normalized Discounted Cumulative Gain
(nDCG), and precision/recall at various cutoffs—to quantify
retrieval performance [77]. For ambiguous queries, these
metrics are typically computed with respect to multiple valid
ground truths, each corresponding to a distinct interpretation

of the query. For instance, if a query like “mercury” has
multiple relevant result sets—planets, chemical elements, au-
tomotive references—each is treated as a possible correct
interpretation. [78, 79]

Alongside these classical metrics, we incorporate an In-
terpretability Score designed to measure the clarity of the
system’s explanations. While measuring interpretability is an
inherently subjective task, we can use surrogate methods such
as user surveys or proxy metrics like the fraction of logic rules
satisfied that match an expert-defined gold standard [80]. For
the latter, domain experts might specify which rules should
logically apply if the query were intended to reference a cer-
tain context, and the system’s alignment with these rules can
be tallied.

4.2 Experimental Methodology
The empirical methodology typically involves the following
steps: [81]

1. Dataset Preparation: Construct or select a knowledge
base containing entities that exhibit overlaps in mean-
ing or usage. Ensure that annotations and embedding
vectors are available. Curate a set of ambiguous queries,
each with multiple valid interpretation labels. [82]

2. Baseline Methods: Implement or select baseline re-
trieval methods, such as pure embedding-based rankers,
and possibly naive expansions of the query that do not
incorporate logic-based constraints.

3. Implementation of Proposed Framework: Integrate
the symbolic logic rule set with the embedding-based
retrieval pipeline. Adjust weighting parameters α and
β to balance the contribution of vector-based similarity
against symbolic constraints.

4. Evaluation Protocol: For each ambiguous query, re-
trieve a ranked list of entities using both the baseline
and the proposed framework. Compute the ranking
metrics for each distinct interpretation [83]. Assess the
interpretability by analyzing the system’s logic-based
justifications, either through an automated alignment
measure or a user study. [84]

5. Statistical Analysis: Compare the performance gains
across different methods via significance tests, ensuring
that improvements in ranking quality are robust. Simi-
larly, compile user feedback on interpretability if a user
study is conducted, to gauge the clarity and usefulness
of the logic-based explanations.

4.3 Illustrative Scenario: Scientific Article Retrieval
Consider a knowledge base of scientific articles in the biomed-
ical domain, where terms like “gene expression,” “cell line,”
and “model organism” may appear within thousands of pub-
lications [85]. An ambiguous query could be “viral model,”
which might refer to in vitro systems, animal models, or com-
putational simulations of viral behavior. The system extracts
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a vector v(q) from the textual representation of the user’s
query, then computes similarity scores with candidate articles.
The symbolic descriptor σ(q) might specify the domain as
“biology,” with partial indications that the user is interested in
experimental setups [86]. The rule set can include:

IsExperimentalModel(σ(e))∧MentionVirus(σ(e))

⇒ ExperimentalContextRelevance
(1)

IsComputationalSimulation(σ(e))∧MentionVirus(σ(e))

⇒ SimulationContextRelevance
(2)

Articles that mention laboratory experiments and viral
cultures would score highly on
[87] ExperimentalContextRelevance,
while purely computational studies would satisfy
(SimulationContextRelevance.

Depending on the weighting, the system might rank actual
experimental studies higher if the embedding similarity also
aligns with that context [88, 89]. The interpretability layer
would then indicate that the experimental context rule was
triggered, providing the user with a concise explanation for
why a certain set of articles was prioritized.

4.4 Illustrative Scenario: Enterprise Data Warehouse
Queries

In an enterprise context, knowledge bases often comprise a
variety of semi-structured records: sales reports, inventory
logs, and HR documentation [90]. An ambiguous query, such
as “employee turnover,” can refer to an HR policy document,
a financial report describing turnover costs, or a data analyt-
ics presentation on retention rates. The system’s logic rules
might consider the domain categories (finance, HR, analytics),
checking for domain alignment between the query’s symbolic
descriptor σ(q) and each entity’s σ(e) [91]. If σ(q) denotes
a focus on policy guidelines, the rule might be:

IsPolicyDocument(σ(e))∧ InvolvesEmployees(σ(e))

⇒ PolicyFocusScore
(3)

Entities describing purely numeric turnover trends might
earn a “numericAnalysisScore” instead [92]. The final ex-
planation to the user highlights that the chosen ranked item
is indeed an HR policy file, matching the user’s interest in
guidelines rather than statistical data, thus reinforcing trust in
the retrieval system. [93]

A broad retrieval module identifies potential matches,
which are then scored by a logic reasoning component to
yield the final ranked list. An interpretability layer sits atop
these components, extracting a set of justifications for the final
ordering of results [94]. The synergy between vector-based
matching and symbolic rules forms the crux of the explainable
mechanism.

5. Discussion of Results and Broader
Implications

The integration of symbolic logic with embedding-based re-
trieval for ambiguous queries yields multiple benefits [95].
First, the availability of rule-based justifications allows do-
main specialists and casual users alike to trace the system’s
reasoning, bridging the gap between opaque neural models
and actionable insights. The synergy of embedding distances
with explicit constraints provides a means to systematically
handle multi-faceted queries where lexical overlaps may be
insufficient to fully capture the user’s intent. [96]

Nevertheless, the framework carries several practical caveats
[97]. One concern is the manual curation of logic rules, which
can be labor-intensive, especially for highly specialized do-
mains. While adaptive or data-driven rule induction could
mitigate some of these efforts, the correctness and complete-
ness of automatically extracted rules remain an open problem
[98, 99]. Moreover, the vector embedding module may drift or
degrade if the underlying text corpus evolves over time, forc-
ing periodic retraining or updating of the embedding space. In
domains with dynamic content, both the symbolic annotations
and the embedding models must be systematically maintained
to preserve the reliability of the explanation mechanism. [100]

Another consideration relates to computational scalability.
As knowledge bases grow in size, the two-stage retrieval pro-
cess can become computationally heavy [101]. Pre-filtering
with efficient approximate nearest neighbor searches can mit-
igate some of these challenges [102]. Nonetheless, the final
disambiguation stage, which applies multiple logic constraints,
may still require significant processing. The tuning of hyper-
parameters α , β , and rule weights must be performed with
care to ensure robust performance across a variety of query
types. [103]

In terms of user interaction, the interpretability layer’s for-
mat is critical for acceptance. Logical proofs or symbolic trace
statements can overwhelm users lacking domain or technical
expertise [104]. Therefore, creating succinct and user-friendly
explanations that faithfully represent the underlying reasoning
is essential. Strategies might include natural language gen-
eration systems that condense symbolic logic matches into
readable sentences, or well-designed graphical interfaces that
highlight the relevant portions of an ontology. [105]

The question of standardizing interpretability metrics re-
mains a pressing issue [106]. While user studies offer valuable
subjective feedback, the field lacks uniformly accepted quanti-
tative measures for interpretability, particularly in the context
of retrieval tasks. Initiatives to develop shared benchmarks or
standardized explanation tasks are thus highly relevant [107].
Another area that deserves further exploration is the potential
synergy with active learning or human-in-the-loop paradigms,
where real-time user feedback can refine both the logic rule
sets and the system’s overall ranking strategy.

From an ethical standpoint, providing transparent explana-
tions can reduce the risk of biased or incorrect retrieval results
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going unchecked [108]. Nevertheless, the system must be
carefully designed to ensure that partial or overly simplistic
explanations do not mislead users into a false sense of security.
There is also the risk that malicious actors could exploit the
interpretability layer to reverse-engineer the system’s logic
for harmful purposes, such as spamming or misinformation
campaigns [109]. Addressing these adversarial aspects calls
for robust safeguard mechanisms, such as anomaly detection
in user behavior and masked release of certain rule sets in
sensitive domains. [110]

In conclusion, while the integration of explainable rank-
ing for ambiguous queries requires careful methodological
considerations, it promises to significantly enhance trust, clar-
ity, and effectiveness in knowledge base retrieval. By com-
bining vector-based similarities, symbolic logic rules, and
user-centric explanation interfaces, the approach provides a
balanced means of reconciling multiple query interpretations
[111]. This alignment of interpretability and performance
stands as a crucial step forward in making large-scale knowl-
edge systems more transparent and user-friendly.

6. Conclusion
This paper has presented a robust, integrative approach for
delivering explainable search result rankings in the context
of ambiguous knowledge base queries [112]. By unifying
embedding-based representations with symbolic logic con-
straints, the framework allows multiple potential interpreta-
tions to be systematically identified and then weighed accord-
ing to domain-specific rules. The explanation layer renders
these processes transparent, exposing both the contribution of
semantic similarity scores and the satisfaction of logic-based
constraints to end-users [113]. Our discussion has explored
the major challenges—ranging from the manual creation of
rule sets to the computational complexity of multi-stage rank-
ing—and provided examples illustrating how this methodol-
ogy can be applied in scientific, enterprise, or general-purpose
knowledge bases. [114]

Empirical evaluations emphasize not only the accuracy
of result lists for ambiguous queries but also the quality of
interpretability that is crucial for trust and validation in knowl-
edge retrieval systems. We have highlighted metrics, user
studies, and logical alignment checks that can guide the de-
velopment of standardized benchmarks in this evolving field
[115]. While various aspects of the approach remain open for
future research, such as automated rule discovery, improved
explanation formats, and the interplay with active learning, the
present study underscores the value of merging symbolic and
sub-symbolic paradigms for transparent information retrieval.

Ultimately, incorporating explainable ranking mechanisms
not only improves user satisfaction but also mitigates risks
linked to misinterpretation or hidden biases in large-scale sys-
tems [116]. These considerations remain pivotal for many
domains, including healthcare, finance, and scientific infor-
mation retrieval, where accountability and verifiability are
paramount. With a careful balance of interpretability and per-

formance, the proposed framework lays the groundwork for
more trustworthy and comprehensible knowledge base search
services, particularly in cases where the user’s initial query
may be ambiguous or prone to multiple meanings. [117]
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