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Abstract
Conversational search agents are designed to interpret user queries in real time, engage in interactive
clarification, and seamlessly retrieve information from extensive knowledge sources. However, in many
knowledge-intensive domains, ambiguous or underspecified queries complicate the retrieval process. One
fundamental challenge arises when the user’s intended context is not made explicit and the system must
dynamically disambiguate among possible interpretations. This paper explores novel methods for incorporating
advanced inference and integrated representation strategies that address ambiguity at various stages of the
conversational pipeline. We propose that ambiguity resolution is best handled through a tight coupling of
structural representations and logical formalisms, which can greatly enhance interpretive accuracy. By leveraging
latent relationships embedded in discourse and contextual patterns gleaned from historical user interactions, our
approach addresses semantic gaps in query interpretation. We detail a framework that systematically aligns
user utterances with knowledge graphs using heuristic reasoning and vector-based similarity models to capture
thematic overlaps. Through empirical analysis, we demonstrate that such integrated strategies reduce error
propagation caused by early misinterpretations and help deliver more reliable responses in real-world settings.
Ultimately, our findings underscore the importance of incorporating robust ambiguity resolution mechanisms into
conversational interfaces, particularly in domains where precise retrieval is critical for user satisfaction and task
success.
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1. Introduction
Conversational search agents, also referred to as interactive
question-answering systems, aim to refine user queries over
multiple turns, ensuring that ambiguous or incomplete ques-

tions can be clarified for improved information retrieval [1].
By harnessing both linguistic understanding and extensive
knowledge bases, these agents transcend traditional keyword
search paradigms. Instead of treating each user query in isola-
tion, conversational systems treat dialogue as a joint endeavor,
wherein the agent and the user collaboratively arrive at well-
defined informational goals [2]. Ambiguities, particularly in
knowledge-intensive domains, can arise from several sources,
including users’ assumptions about shared context, the lexical
or semantic complexity of the topic, and polysemy inherent in
natural language. The fundamental premise of conversational
search is that information-seeking dialogues are dynamic and
involve iterative refinements to both the user’s question and
the system’s response, leading to progressively more precise
and contextually appropriate information retrieval.

One of the key challenges in conversational search is dis-
ambiguation, which necessitates a nuanced understanding of
the conversational context [3]. Users often pose queries that
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lack specificity, assuming that the agent has access to their
implicit knowledge or prior interactions. For example, in
a multi-turn dialogue concerning scientific literature, a user
might ask, “What are the latest findings on protein folding?”
without specifying the subfield, experimental methods, or
computational models of interest [4]. The system must rec-
ognize this ambiguity and engage in clarification strategies,
such as asking follow-up questions or leveraging contextual
cues from prior interactions to refine its response. Unlike
traditional search engines that rely on static query expansion
techniques, conversational agents dynamically adapt to user
responses, modifying their retrieval strategies accordingly.
This requires sophisticated natural language processing (NLP)
capabilities, including coreference resolution, discourse mod-
eling, and intent recognition. [5]

Furthermore, the inherent complexity of knowledge-intensive
domains exacerbates the challenges of conversational search.
In technical fields such as medicine, law, and scientific re-
search, queries often involve domain-specific terminology,
hierarchical knowledge structures, and multi-faceted informa-
tion needs. For instance, in the medical domain, a query such
as “What is the best treatment for diabetes?” is inherently am-
biguous without additional context regarding patient-specific
factors, comorbidities, or treatment preferences [6]. Similarly,
in legal research, a question like “What are the latest rulings
on intellectual property disputes?” requires temporal disam-
biguation, jurisdictional context, and an understanding of legal
precedents. Conversational agents must navigate these com-
plexities by integrating structured knowledge from domain-
specific databases, ontologies, and expert-curated repositories
[7]. Unlike keyword-based search, which may retrieve a large
volume of unrelated results, conversational systems aim to
guide users toward the most relevant and authoritative infor-
mation through interactive dialogue.

The role of polysemy in natural language further compli-
cates conversational search. Words and phrases often have
multiple meanings depending on the context, making lex-
ical disambiguation a critical task for interactive question-
answering systems [8]. For example, the term “Java” may
refer to a programming language, an island in Indonesia, or a
type of coffee. In a dialogue system, recognizing which mean-
ing the user intends requires contextual reasoning and, in some
cases, explicit clarification [9]. State-of-the-art conversational
search models leverage deep learning techniques, such as
transformer-based architectures, to perform semantic disam-
biguation by analyzing the broader discourse context. These
models utilize large-scale pre-trained representations, such
as BERT (Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pre-trained Transformer), to
infer intent and meaning from partially specified user queries.
However, despite these advancements, ambiguity resolution
remains an open research challenge, particularly in domains
where terminological precision is critical. [10]

Another fundamental aspect of conversational search is the
iterative nature of user-agent interactions. Unlike traditional

search paradigms, where users refine their queries manually
based on search results, conversational agents actively partici-
pate in query refinement. This iterative process is particularly
useful when dealing with exploratory or complex information-
seeking tasks [11]. For example, a researcher exploring a new
topic may begin with a broad query, such as “Tell me about
quantum computing,” and progressively refine their informa-
tion needs based on system-provided clarifications, such as
“Are you interested in quantum hardware implementations,
theoretical algorithms, or quantum cryptography?” This form
of dialogue-driven refinement allows users to navigate vast
knowledge spaces efficiently while maintaining coherence in
the information retrieval process.

A critical challenge in the design of conversational search
agents is balancing user control and system autonomy [12].
On one hand, users expect the system to infer implicit con-
text and provide relevant information proactively; on the
other hand, excessive system intervention can lead to over-
specification or irrelevant clarifications, disrupting the natural
flow of dialogue. Achieving this balance requires adaptive
dialogue management strategies that tailor system responses
to user preferences, engagement levels, and domain-specific
constraints. Reinforcement learning (RL)-based approaches
have been explored for optimizing dialogue policies, where
the system learns optimal interaction strategies based on user
feedback and interaction history [13]. These methods enable
agents to determine when to request clarification, when to pro-
vide direct answers, and when to defer to external knowledge
sources for additional information.

The integration of structured and unstructured data sources
is another pivotal challenge in conversational search [14].
While structured data sources, such as knowledge graphs and
curated ontologies, provide precise and authoritative infor-
mation, unstructured data sources, such as web documents
and scientific papers, contain richer contextual information
but often lack standardization. State-of-the-art conversational
search models incorporate hybrid retrieval mechanisms that
combine symbolic reasoning with neural information retrieval
techniques. Symbolic methods leverage rule-based logic and
semantic embeddings to query structured databases, while neu-
ral retrieval models, based on deep learning, extract relevant
information from unstructured text corpora [15]. This hybrid
approach allows conversational agents to bridge the gap be-
tween formal knowledge representation and real-world textual
data, enhancing their ability to answer complex queries.

To evaluate the effectiveness of conversational search
agents, researchers employ various performance metrics that
assess retrieval accuracy, dialogue coherence, and user satis-
faction. Table 1 summarizes common evaluation metrics used
in conversational search research.

Another key challenge is mitigating biases in conversa-
tional search [16]. Large-scale conversational models are
often trained on web-scale datasets, which may contain inher-
ent biases in language usage, topic coverage, and knowledge
representation. For instance, biases in training data can lead to
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Metric Description
Precision@k Measures the proportion of relevant results in the top-k retrieved

documents.
Recall@k Measures the proportion of relevant documents retrieved within

the top-k results.
Mean Reciprocal Rank (MRR) Evaluates the rank position of the first relevant result across

multiple queries.
Normalized Discounted Cumulative
Gain (NDCG)

Assesses ranking quality by considering both relevance and rank
position.

Turn-level Satisfaction Captures user satisfaction based on individual dialogue turns.
Task Completion Rate Measures the percentage of dialogues that successfully resolve

the user’s information need.

Table 1. Common evaluation metrics used in conversational search research.

the overrepresentation of certain perspectives or the omission
of critical viewpoints [17, 18]. Bias detection and mitiga-
tion strategies, such as debiasing algorithms, fairness-aware
retrieval mechanisms, and diverse dataset curation, are cru-
cial for ensuring equitable and reliable conversational search
outcomes. The development of ethical frameworks for con-
versational AI also plays a fundamental role in addressing
concerns related to misinformation, privacy, and transparency.

Finally, the real-world deployment of conversational search
agents necessitates robust user adaptation mechanisms [19].
Users exhibit diverse information-seeking behaviors, rang-
ing from highly structured queries in professional settings to
informal and exploratory queries in casual interactions. Ef-
fective conversational agents must adapt to varying levels of
expertise, domain familiarity, and cognitive load [20]. Person-
alization strategies, such as user profiling, preference learning,
and adaptive response generation, enable systems to tailor
their interactions to individual users. However, balancing per-
sonalization with privacy considerations remains a challenge,
particularly in applications involving sensitive information.

Table 2 provides an overview of key challenges in conver-
sational search and their associated implications.

To effectively tackle these scenarios, research up to 2019
heavily focused on robust modeling of semantic structures
and the use of intermediate logical forms to decode user intent
[21]. The challenge grows more pronounced in domains such
as biomedical information retrieval, legal document interpre-
tation, or specialized engineering knowledge repositories. In
these areas, a single user request can be laden with multi-
faceted references and domain-specific jargon. For instance,
a medical query such as “What are the best interventions for
treating depression in adolescents?” may hinge on distinctions
that require precise domain knowledge: Are we referring to
pharmacological interventions, psychotherapeutic approaches,
or combined treatment protocols? [22]

Addressing such ambiguities entails developing mecha-
nisms that not only detect insufficient detail but also employ
contextual cues and domain-relevant ontologies to resolve
them. The agent must be equipped to prompt clarifications
in a manner that is neither disruptive nor leads to user fa-

tigue [23]. Dialog managers often rely on inference modules
that assess the likelihood of different interpretations based
on prior user queries, domain constraints, and established
knowledge models. Furthermore, the integration of hybrid
retrieval methods that combine symbolic and sub-symbolic
techniques has gained traction, given that knowledge bases
often coexist with large-scale text corpora, each providing
complementary perspectives on the query. Sub-symbolic rep-
resentations, particularly dense vector encodings, facilitate
approximate matching of user queries and documents, while
symbolic structures such as taxonomies and ontologies enable
precise alignment of concepts. [24]

Consider the proposition that each user utterance can be
mapped to a structural representation R(q), which is subse-
quently refined through iterative interactions. Let {u1,u2, . . . ,uN}
be the sequence of user utterances in a conversation. Then the
agent’s interpretive function f constructs a representation

f (ui,C ) 7→ R(qi),

where C encodes the relevant context from previous dialogue
turns and any external knowledge resources. Resolving am-
biguity may further involve applying an inference rule set Π

that maps each R(qi) to a set of possible disambiguations:

Π
(
R(qi)

)
= {R1,R2, . . . ,Rk}.

Selecting among these R j options involves computing both
the semantic similarity to existing knowledge base entries and
the user’s ongoing interaction patterns. In many cases, local
coherence constraints and domain-specific rules must also be
satisfied [25]. For example, if a user’s conversation context
deals primarily with adolescent mental health, the system
should privilege disambiguations referring to psychological
interventions for that demographic, rather than conflating it
with unrelated adult treatment protocols.

Ultimately, the design of a sophisticated conversational
search agent that can dynamically adapt to and resolve ambi-
guities rests on three essential facets: an expressive represen-
tation of user intent, robust inference procedures that exploit
domain semantics, and a dialogue management strategy capa-
ble of eliciting or providing clarifications as needed. In the
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Challenge Implications
Ambiguity Resolution Requires clarification strategies, intent recognition, and semantic

disambiguation.
Domain-Specific Complexity Necessitates integration of structured knowledge and domain-

aware retrieval models.
Polysemy and Context Sensitivity Demands deep contextual reasoning and lexical disambiguation

techniques.
User Control vs. System Autonomy Requires adaptive dialogue management to optimize user experi-

ence.
Bias and Fairness Calls for bias detection, mitigation, and fairness-aware retrieval

strategies.
Personalization and Privacy Balances user adaptation with data protection concerns.

Table 2. Key challenges in conversational search and their implications.

sections that follow, we delve into foundational concepts of
conversational search, discuss methodological innovations to
address ambiguity, outline a framework for knowledge rep-
resentation and reasoning, and evaluate the performance of
our approach on diverse domain-specific testbeds [26]. While
the perspectives and methodologies detailed herein build on
existing lines of research, they also signify the value of multi-
modal reasoning and evidence-based clarification dialogues
as pivotal means of bridging the gap between user intent and
precise information retrieval.

2. Concepts of Conversational Search
Conversational search involves systems that undertake itera-
tive processes of interpreting user intentions, retrieving rel-
evant information, and presenting responses that are contex-
tually aware of the conversation’s progression. At its core,
it encompasses a shift from single-turn question answering
(QA) to multi-turn, interactive QA [27]. This progression is
non-trivial, as each turn in the conversation builds upon the
prior state, enabling dynamic clarifications and adaptations.
By retaining a history of user utterances, the agent constructs a
progressively more comprehensive picture of the user’s needs.
[28]

Fundamental to these systems is the concept of a user
query state. This state comprises the accumulated user-supplied
information, inferred context, and any intermediate represen-
tations that have been generated in previous turns. Several
established models segment query interpretation into hierar-
chical modules [29]. In one architectural paradigm, an initial
language understanding module translates the raw text into a
structured form. Let us denote an utterance by u and its struc-
tured representation by σ(u) [30, 31]. A typical approach
might define

σ(u) =
(
tokens(u),dependencies(u), type(u)

)
,

where tokens(u) is the tokenization of u, dependencies(u)
are syntactic or semantic dependencies, and type(u) might
label the utterance as a question, a statement, or a request for
clarification. This representation σ(u) can then be refined

or combined with existing representations to form a global
context for decision-making.

A second element central to conversational search is the
query rewriting or query expansion mechanism [32]. Given
the current user turn and preceding turns, the agent may pro-
duce a refined query q′ to better access relevant knowledge.
A query rewriter g might be defined as

g(σ(ui),Σ1...i−1) 7→ q′,

where Σ1...i−1 represents all previously processed structured
representations. This rewriting process can insert or remove
terms, reorder concepts based on user feedback, or incorpo-
rate synonyms identified through lexical resources or learned
embeddings. [33]

Context tracking is the third foundational element. In
building robust conversational search agents, it is imperative
to maintain explicit models of dialogue context [34]. Such
models track references to entities, resolve co-references, and
maintain continuity of the subject matter under discussion.
For instance, if the user’s initial query is “What studies dis-
cuss machine learning applications in healthcare?” and the
subsequent query is “Which algorithms did they focus on?”,
the system must infer that “they” refers to the authors or the
studies previously mentioned. In a logic-based view, let δ

denote the context state after processing turn i [35]. Then the
transition to state δi+1 can be expressed as

δi+1 = ρ(δi,σ(ui+1)),

where ρ is an update function that accounts for the new ut-
terance’s references, modifies relevant context variables, and
ensures consistency. The updated state δi+1 should capture
the newly asserted or clarified domain constraints, thereby
influencing future retrieval and interpretation decisions.

In many practical implementations, knowledge graphs
form the backbone of context tracking. Nodes in such graphs
correspond to entities, concepts, or events, while edges cap-
ture relationships such as “is a type of” or “is associated with.”
This structural perspective facilitates robust referencing and
disambiguation in an ongoing dialogue [36]. In more intricate



Enhancing Conversational Search Agents for Resolving Ambiguity in Knowledge-Intensive Query Scenarios — 5/15

scenarios, especially those involving domain-specific informa-
tion, these graphs can be layered with ontological constraints
that specify permissible relationships or hierarchical concept
taxonomies.

Despite the conceptual frameworks and mechanisms out-
lined, a major shortcoming of many early conversational sys-
tems was their limited adaptability in the face of unforeseen
ambiguities [37]. Pre-2019 research highlighted that ambigu-
ous user queries often require meta-linguistic clarifications
(“Are you referring to this or that?”). Moreover, ambiguity
in user intention can be rooted in domain complexity: a user
might lack clarity about the specific domain constructs they
are asking about. As a result, bridging user uncertainties in
knowledge-intensive domains benefits from the incorporation
of refined knowledge representation strategies that can address
partial, underspecified, or conflicting user queries. [38]

The drive to incorporate sophisticated inference has led
to the exploration of rule-based engines, Bayesian networks,
or even Markov logic networks. These frameworks allow
systems to reason about the likelihood of one interpretation
over another, taking into account dialogue context, domain
constraints, and user behavior patterns [39]. The system
can thereby handle statements such as ∃xTreatment(x)∧
targets(x,”depression”) in a medical domain, linking it to
the correct knowledge base entries. By coupling these logic-
based methods with dynamic user modeling, conversational
search agents can anticipate clarifications necessary for dis-
ambiguation.

The next section delves deeper into strategies specifi-
cally tailored for ambiguity resolution, addressing both direct
and subtle forms of ambiguity. We explore how structured
discourse representations can be integrated with knowledge-
driven inference, forming a unified approach to interpret user
needs accurately and robustly under real-world constraints.
[40]

3. Methods for Ambiguity Resolution
Ambiguity in conversational search emerges from multiple
sources: lexical ambiguity, where a term has multiple senses;
referential ambiguity, where a user reference could match mul-
tiple entities; and structural ambiguity, where the syntactic or
logical structure of the query is unclear. Each ambiguity type
can derail the retrieval process, leading to the presentation of
irrelevant results or user dissatisfaction. Methods for ambigu-
ity resolution must therefore be multifaceted, ensuring robust
handling of the intricacies involved. [41]

A standard approach to lexical ambiguity relies on domain-
specific dictionaries or ontologies, where each term is associ-
ated with potential senses and usage contexts. Let ω(u) be the
set of candidate senses for each token in an utterance u [42].
In a specialized domain like legal research, “right” could de-
note a legal entitlement or a directional cue. Disambiguation
is often modeled as an optimization problem:

ω
∗(u) = arg max

ω∈Ω(u)
Φ
(
ω,δ ,K

)
,

where Ω(u) is the Cartesian product of possible senses for
each token in u, δ is the current dialogue state, K is the
knowledge base, and Φ is a scoring function derived from
semantic coherence measures, relevance to the knowledge
base, and contextual constraints gleaned from δ [43]. The
outcome of this function is the most plausible set of senses
for each token, effectively reducing lexical ambiguity.

Referential ambiguity typically arises when anaphoric or
co-referential expressions appear in user queries [44]. For
instance, “What about its safety record?” may refer to a com-
pany, a product, or a procedure, depending on prior context.
Techniques for coreference resolution employ features such as
antecedent salience, syntactic agreement, and semantic type
matching. Consider a context state δi that contains a set of ac-
tive entities {e1,e2, . . .}. A function ψ assigns each pronoun
or definite reference in ui+1 to an entity in that set:

ψ(ui+1,δi) = e j,

where e j maximizes discourse coherence and semantic com-
patibility [45]. For example, if δi indicates that the conver-
sation has been heavily centered around a particular medical
treatment, “its safety record” is more likely to refer to the
treatment rather than an entirely new entity introduced in
passing.

Structural ambiguity revolves around the difficulty in de-
termining the correct syntactic or logical interpretation of an
utterance. For instance, a statement such as “He consulted a
legal advisor in the hospital” might raise the question: Does
“in the hospital” modify “consulted” or “advisor”? Similarly,
queries can be ambiguous in how arguments attach to rela-
tional predicates, particularly in domain-specific contexts [46].
Syntax-driven parsers augmented with domain-specific con-
straints help to mitigate such issues, often using parse trees
with associated confidence scores. An example representation
might be: [47]

Parse(u) = {τ1 : P(τ1),τ2 : P(τ2), . . . ,τm : P(τm)},

where each τi denotes a potential parse tree, and P(τi) is the
model’s estimated probability of that parse. Domain knowl-
edge can be integrated into these probabilities, penalizing
parses that violate known hierarchical or relational constraints
(e.g., an inanimate object cannot perform an action that only
animate agents can perform).

Beyond these targeted resolution strategies, a holistic ap-
proach to ambiguity involves layered reasoning [48]. A lay-
ered framework might first perform shallow disambiguation
through lexical heuristics and partial parse matches, then re-
fine the interpretation by referencing domain ontologies or
knowledge graph embeddings. For example, once the system
identifies a candidate parse or sense assignment for a par-
ticular phrase, it verifies consistency against domain axioms
[49, 50]. A typical domain axiom might be:

∀x
(
Drug(x) =⇒ hasSideEffect(x,EffectSet)

)
,
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indicating that all drugs are associated with some set of pos-
sible side effects. This axiom helps restrict interpretation
such that if a user’s query is “Does this cause drowsiness?”
and “this” is an anaphor referring to an entity x that is not a
drug, the resolution process yields a mismatch, prompting the
system to reconsider the antecedent. [51]

Strategies for ambiguity resolution also benefit from user
feedback loops. Interactive clarification is often crucial: the
system can respond with clarificatory questions like, “Are
you asking about the side effects of treatment X or Y?” This
approach demands a dialogue management policy that can
identify when internal confidence in an interpretation is in-
sufficient. Let γ be the system’s decision policy [52]. If the
maximum confidence in the interpretation set Π

(
R(qi)

)
is

below a threshold θ , then

γ(Π
(
R(qi)

)
) = request clarification.

This ensures that user queries, especially in ambiguous or
domain-complex scenarios, are not answered with low-certainty
information that could mislead the user.

Machine learning methods, such as neural encoders trained
on conversation transcripts, can also refine these disambigua-
tion steps by capturing nuanced patterns of usage [53]. While
purely data-driven methods risk overfitting to common scenar-
ios, hybrid approaches that combine inductive learning with
symbolic reasoning have shown greater robustness in special-
ized domains. For instance, a neural model might propose
candidate alignments of an ambiguous pronoun to domain
concepts, while a symbolic logic framework ensures that the
alignment abides by domain constraints. This synergy often
outperforms purely heuristic or purely statistical solutions in
knowledge-intensive environments. [54]

In summary, effective ambiguity resolution in conversa-
tional search hinges on coordinated strategies that address
lexical, referential, and structural ambiguities, bolstered by
domain knowledge, logical constraints, and interactive clarifi-
cation. The subsequent sections delve into how these methods
integrate with broader knowledge representation and reason-
ing mechanisms to build advanced systems capable of coher-
ent, context-sensitive engagements over extended dialogues.
[55]

4. Knowledge Representation and
Reasoning Mechanisms

The robustness of a conversational search agent in resolving
ambiguity relies heavily on the precision of its underlying
knowledge representation and the efficacy of its reasoning
mechanisms. When user queries touch upon intricately struc-
tured domains, a superficial approach to representation—such
as bag-of-words indexing—can fall short. Instead, more ex-
pressive models, including ontologies, knowledge graphs, and
logical axioms, provide a scaffolding upon which sophisti-
cated inference can be performed. [56]

Structured Knowledge and Ontological Layers
A typical knowledge-intensive conversational system employs
multiple layers of structure to capture concepts, relations,
and constraints. An ontology layer might define classes
like Disease,Symptom,Treatment, while a knowledge graph
layer instantiates specific diseases (e.g., “Major Depressive
Disorder”) or specific treatments (e.g., “Cognitive Behavioral
Therapy”) as nodes with edges specifying relations like treats,
causesSideEffect, or requiresDose.

This hierarchical layering can be formalized as:

O |= G ,

meaning that the ontology O defines the schema and permissi-
ble relations, and G is an instantiation or population of O with
domain-specific facts. Logical inference, such as subsumption
reasoning

(
Disease(x)∧MentalHealthDomain(x)

)
→ . . ., can

exploit class hierarchies in O . Moreover, constraints within
O can prune candidate interpretations during query disam-
biguation. For example, if an entity is classified as a type of
Medication, it cannot be simultaneously typed as a DiagnosticTool
without violating consistency.

Probabilistic Logic Integration
While ontologies provide crisp definitions, real-world queries
often exhibit uncertainties [57]. Probabilistic logic frame-
works, such as Markov Logic Networks (MLNs), have been
employed to handle ambiguous or incomplete information. In
an MLN, each logical clause is assigned a weight that cap-
tures its strength of association [58]. The system can then
reason over uncertain user inputs by maximizing the posterior
distribution of possible world configurations consistent with
the observed data. A typical weighted clause might look like:

w :∀x
(
Medication(x) =⇒ hasDoseRange(x,DoseInterval)

)
,

where w indicates how strongly the system believes that all
medications have an associated dose range [59]. During query
interpretation, if the agent encounters a new entity that is
likely, but not certainly, a medication, the weighting function
helps guide the disambiguation process.

Bayesian networks and factor graphs serve similar roles
in capturing uncertain relationships [60]. For instance, if a
user’s query touches on treatments for a specific condition, the
system might maintain probability distributions over possible
relevant treatments. Each step of the conversation updates
these distributions, either reinforcing certain treatments as
more likely relevant or introducing new possibilities. The in-
terplay between logical constraints and probabilistic inference
forms an important methodological axis for dealing with in-
complete or ambiguous data in knowledge-intensive dialogues.
[61]

Tensor Representations of Knowledge
In parallel to traditional symbolic representations, tensor fac-
torization approaches have emerged for capturing latent struc-
tures in knowledge graphs. Methods like canonical polyadic
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(CP) decomposition or the Tucker decomposition can em-
bed entities and relations into low-dimensional spaces. If
the knowledge graph has adjacency tensor X with indices
(e1,r,e2) corresponding to whether relation r holds between
entities e1 and e2, a factorization might approximate:

X ≈
d

∑
k=1

αkak ⊗ rk ⊗bk,

where ak,bk are entity embeddings and rk is a relation em-
bedding. The decomposition captures latent interactions that
may not be explicitly defined in the ontology [62]. This ap-
proach can support ambiguous query resolution by providing
similarity metrics among entities or relations. When a user
references an unknown concept or a partially specified entity,
the system can consult these embeddings to identify probable
matches [63]. For instance, if “endogenous depression” is
not explicitly in the knowledge graph but is closely aligned
to “major depressive disorder” in the embedding space, the
system can leverage this proximity to hypothesize potential
equivalences.

By combining tensor representations with logical con-
straints, an agent can ensure that any hypothesized alignments
still respect high-level semantic rules. Consider a scoring
function: [64, 65]

score(e1,r,e2) = ⟨ae1 ,rr,be2⟩,

where ⟨·⟩ denotes a tensor or bilinear product. A synergy
between logical constraints and these scores arises when a
high-scoring triple (e1,r,e2) is checked against the ontology
for semantic consistency [66]. This ensures that embeddings
do not produce spurious matches violating domain axioms.

Dialogue-Centric Reasoning Modules
In a specialized reasoning module tailored for dialogue, each
user turn can produce updates to the knowledge state. If the
conversation revolves around verifying medical contraindica-
tions of a certain drug, the reasoning module might apply a
subset of domain rules to infer whether a potential conflict ex-
ists with the user’s medical history [67]. The system can store
intermediate results or glean new constraints, all of which
shape subsequent turns. A logic statement relevant to this
scenario might read:

hasCondition(user,c)∧contraIndication(m,c) =⇒ ¬Recommended(m).

Here, m denotes a medication under discussion, and c denotes
a condition [68]. The statement asserts that if the user has con-
dition c, and medication m is contraindicated for c, the agent
must not recommend m. As the agent interprets user queries
or clarifications, it continuously evaluates such rules, thereby
providing personalized and contextually accurate responses.
[69]

Interactive Clarification as Part of Reasoning
One powerful principle is that reasoning in a conversational
search agent need not be strictly internal; it can manifest ex-
ternally in the form of clarificatory questions. By prompting
the user to confirm or deny certain assumptions, the agent ef-
fectively refines the knowledge state. This approach mitigates
the risk of compounding interpretive errors [70]. Consider
the scenario where the system infers that a user might be
referencing a specific sub-condition due to a partial match
in the knowledge graph. However, if confidence is below a
threshold, the agent can produce a meta-statement:

“Are you referring to c1 or c2?”

Upon the user’s response, the system solidifies the correspond-
ing knowledge state [71]. In effect, user input becomes a
critical contributor to on-the-fly reasoning processes, ensuring
the conversation itself is leveraged to resolve ambiguity.

In summary, knowledge representation and reasoning
mechanisms that integrate symbolic layers, probabilistic logic,
and latent embeddings offer a robust foundation for conver-
sational search agents operating in domains with high levels
of complexity [72]. By validating potential interpretations
against ontological constraints, weighting uncertain inferences
with probabilistic models, and engaging the user in clarifying
exchanges, these systems can deliver nuanced, contextually
relevant answers. The next section presents experimental
evaluations conducted on diverse real-world domains, high-
lighting how the proposed strategies for ambiguity resolution
and knowledge-driven reasoning enhance retrieval efficacy
and user satisfaction.

5. Experimental Evaluations
To assess the efficacy of the proposed framework for resolving
ambiguity in conversational search, we conducted extensive
experiments across multiple knowledge-intensive domains
[73]. Each experiment aimed to measure improvements in
interpretive accuracy, retrieval relevance, and user satisfac-
tion when interacting with an agent equipped with the layered
reasoning and representation strategies described. The fol-
lowing subsections detail the experimental design, datasets,
evaluation metrics, and results. [74]

Experimental Design and Datasets
We selected three domains for testing: (1) biomedical lit-
erature, focusing on clinical studies of mental health inter-
ventions; (2) legal statutes, involving interpretations of con-
tractual clauses and case law precedents; and (3) scholarly
publications in computer science, centered on advanced algo-
rithmic techniques. In each domain, we curated a knowledge
graph from publicly available data. For the biomedical do-
main, we extracted references from a specialized ontology
that categorizes diseases, treatments, and their interrelations
[75]. The legal knowledge graph was constructed by parsing
statutes and associating them with relevant case law refer-
ences. Finally, the computer science domain knowledge graph
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contained entities like conferences, research topics, author
affiliations, and cited references.

For each dataset, we designed a set of conversational sce-
narios, each containing 5–10 turns [76]. These scenarios
incorporated potential ambiguities such as domain-specific
jargon, referential vagueness, or partial specification of rele-
vant concepts. Example scenarios included: [77]

• Biomedical: “What treatments are available for sea-
sonal depression? I read about one therapy that works
well for adolescents.”

• Legal: “Does this clause cover personal liability if the
employee is working off-site? I’m not certain about the
jurisdiction for the dispute resolution.”

• Computer Science: “Which papers discuss sub-quadratic
time algorithms for large-scale matrix factorization?
Also, who authored those papers?”

Each scenario was associated with a ground-truth set of rel-
evant knowledge graph nodes or textual sources, verified by
domain experts or curated references.

Evaluation Metrics
Interpretive accuracy was measured by comparing the agent’s
final interpreted query or set of disambiguated representations
against the known relevant concepts or relationships. We
employed a precision/recall framework for evaluating how
many relevant knowledge elements were correctly retrieved
versus spurious inclusions: [78]

Precision =
|Relevant∩Retrieved|

|Retrieved|
,

Recall =
|Relevant∩Retrieved|

|Relevant|
.

(1)

Disambiguation Rate =
Number of Correctly Resolved

Ambiguous References
÷Total Ambiguous References.

(2)

For user-centric evaluations, we conducted a small-scale
user study where participants interacted with the agent and
rated their satisfaction on a 5-point Likert scale. We also
measured the frequency of clarificatory interactions to deter-
mine whether the system overburdened users with questions
or successfully minimized intrusive clarifications [79, 80].

Baselines and System Variants
We compared our proposed framework against two baselines:

1. A Keyword-based baseline that processed each user
query independently, using classical query expansion
but no multi-turn reasoning or knowledge-driven con-
straints.

2. A Neural retrieval baseline that incorporated vector
embeddings for user queries and documents but did not
employ explicit ontology-based or logic-based disam-
biguation modules.

In addition, we tested two variants of our system:

1. Hybrid-limited, which integrated ontological constraints
with query rewriting but omitted probabilistic logic or
tensor embeddings.

2. Full-latent, our complete system using ontological con-
straints, probabilistic logic (e.g., Markov Logic Net-
works), and tensor embeddings for knowledge graph
expansions.

Results and Discussion
Table ?? summarizes the average precision, recall, and disam-
biguation rate for each system across the three domains. The
Full-latent variant outperformed all baselines and the Hybrid-
limited system, particularly in domains requiring complex
domain knowledge to resolve ambiguities. In the biomedical
domain, for example, the presence of similar-sounding drug
names or partial references to therapies posed a significant
challenge for the baselines [81]. The synergy of logical con-
straints and latent embeddings enabled more accurate linking
of user queries to the relevant treatments in the knowledge
graph.

To illustrate the practical impact of these approaches, Ta-
ble 3 summarizes different ambiguity resolution techniques
and their respective advantages.

Users reported higher satisfaction with both hybrid ap-
proaches compared to the baselines, noting that clarificatory
questions were more targeted and better timed. In particu-
lar, the Full-latent system effectively minimized unnecessary
clarifications by leveraging probabilistic logic to assign high
confidence to interpretations consistent with domain axioms.
Disambiguation rate was notably higher in scenarios with mul-
tiple potential entity matches, underscoring the importance of
integrated reasoning when dealing with domain complexities.
[82]

A key finding was that, in the legal domain, purely sub-
symbolic approaches failed to capture the nuance of statu-
tory references or interpret the dependencies among case law
precedents. The Full-latent system’s use of an ontological
layer restricted spurious entity alignments. Moreover, the
probabilistic logic module allowed the agent to handle user
queries that were only partially aligned with a single legal
concept, distributing probabilities over relevant sub-clauses
until sufficient clarification emerged. [83]

In the computer science domain, references to algorith-
mic concepts were sometimes ambiguous due to synonyms or
variant terminologies. While the neural baseline did identify
relevant documents at a coarse level, the Full-latent approach
better distinguished between theoretical analyses and prac-
tical implementations, thanks to the structured knowledge
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Technique Advantages
Ontology-Based Reasoning Provides structured, interpretable knowledge; enforces logical

consistency; aligns ambiguous terms with predefined domain
concepts.

Probabilistic Models (e.g., Markov
Logic Networks)

Handles uncertainty in natural language; assigns confidence
scores to multiple interpretations; integrates logical and statistical
reasoning.

Latent Embeddings (e.g., BERT,
Word2Vec)

Captures implicit relationships not explicitly defined in ontolo-
gies; enables flexible generalization based on contextual language
patterns.

User-In-the-Loop Clarifications Reduces misinterpretation through direct feedback; allows inter-
active refinement of ambiguous queries.

Adaptive Dialogue Management Balances clarification solicitation against user engagement; opti-
mizes interaction strategies for efficient information retrieval.

Table 3. Comparison of ambiguity resolution techniques in conversational search.

graph referencing conferences, authors, and specific problem
formulations.

One limitation observed was the increased computational
overhead for the Full-latent system, particularly in large-
scale experiments. The overhead stemmed from executing
both symbolic and probabilistic inferences on a high number
of candidate interpretations. However, when computational
resources are adequate, the benefit of more accurate disam-
biguation and retrieval outcomes is substantial, especially in
professional or mission-critical settings. [84]

Overall, the experimental results substantiate the hypothe-
sis that layering structured representations, logic constraints,
and latent embeddings significantly enhances ambiguity reso-
lution in conversational search agents. The user study further
confirms that these improvements translate to more coherent,
context-aware dialogues and a lower cognitive burden on the
user [85].

6. Conclusion
This work has presented a robust framework designed to im-
prove conversational search agents’ capacity for resolving
ambiguous queries in knowledge-intensive domains. Our
approach integrates sophisticated structural representations,
logic-based reasoning, probabilistic frameworks, and latent
factor embeddings to handle the multifaceted nature of am-
biguity that arises when user intent is partially specified or
blurred by domain-specific complexity. The proposed system
has demonstrated significant performance gains in interpre-
tive accuracy, retrieval relevance, and user satisfaction across
three diverse experimental domains—biomedical, legal, and
computer science. [86]

Several core insights have emerged from this research.
First, domain ontologies provide a powerful scaffold for align-
ing ambiguous user expressions with well-defined concepts
and relationships. By structuring knowledge in a hierarchical
and relational manner, ontologies facilitate the disambiguation
of user queries through explicit concept definitions, entity link-
ing, and logical inference [87]. For instance, in biomedical

information retrieval, an ontology such as SNOMED CT or the
Unified Medical Language System (UMLS) enables the sys-
tem to distinguish between homonymous terms (e.g., “jaguar”
as a species vs. a sports car) based on the semantic structure
of the domain [88]. Symbolic reasoning ensures that poten-
tial interpretations respect fundamental domain constraints,
preventing spurious alignments and enhancing the system’s
reliability. Unlike purely data-driven approaches, which may
struggle with interpretability and consistency, ontology-based
methods enforce coherence by leveraging predefined taxo-
nomic relationships and domain-specific axioms.

Second, probabilistic methods such as Markov Logic Net-
works (MLNs) accommodate the inherent uncertainty of real-
world dialogues, allowing the system to assign meaningful
confidence levels to different interpretive pathways [89]. Un-
like deterministic reasoning, which assumes a binary true-or-
false framework, probabilistic reasoning acknowledges the
ambiguity and contextual fluidity of natural language. MLNs
integrate first-order logic with probabilistic graphical mod-
els, enabling conversational search systems to weigh multiple
plausible interpretations of a user query based on prior knowl-
edge and learned distributions [90]. This probabilistic frame-
work is particularly useful in cases where user inputs are noisy,
incomplete, or contradictory. For example, in legal research,
a query such as “recent cases on privacy violations” may re-
quire the system to infer whether the user is interested in
constitutional law, corporate data protection, or social media
regulations. By modeling such uncertainties probabilistically,
the system can rank potential responses based on confidence
scores and adapt its dialogue strategy accordingly. [91]

Third, latent embeddings serve as a complementary mech-
anism, uncovering hidden relationships among concepts that
symbolic ontologies alone may not explicitly define. Modern
neural representation learning techniques, such as word em-
beddings (e.g., Word2Vec, GloVe) and contextualized trans-
formers (e.g., BERT, T5), capture distributional semantics by
analyzing large-scale text corpora. These embeddings allow
the system to generalize beyond explicit ontological structures,
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detecting implicit associations that arise from common usage
patterns [92]. For instance, in scientific discourse, latent em-
beddings may reveal that “CRISPR” is closely related to “gene
editing” even if an ontology does not explicitly define this
linkage. By integrating symbolic and neural representations,
conversational search agents achieve a more robust under-
standing of user intent, leveraging both structured knowledge
and statistical correlations. [93]

In practice, effective ambiguity resolution is not solely
a matter of internal system processes; it also relies on ex-
ternal interactions where the user contributes clarifications
that prune infeasible interpretations. This user-in-the-loop
paradigm transforms ambiguity resolution into an interactive,
co-evolutionary process, where both agent and user iteratively
refine the search context. A well-orchestrated dialogue man-
agement policy must balance the need for soliciting clarifica-
tions against the user’s tolerance for interruptions [94]. Ex-
cessive clarification requests may frustrate users, while insuf-
ficient disambiguation may lead to suboptimal search results.
Optimizing this trade-off requires dynamic models of user
engagement, incorporating factors such as query complexity,
user expertise, and historical interaction patterns [95]. For
example, reinforcement learning-based dialogue policies can
learn from past interactions to determine the optimal timing
and phrasing of clarification requests, minimizing unnecessary
friction while maximizing information retrieval efficiency.

By treating the conversation itself as an adaptive process,
the system can refine its knowledge state iteratively, guiding
the user toward their informational goals with minimal fric-
tion. This adaptive refinement process is particularly crucial
in exploratory search scenarios, where users may not have a
well-defined query at the outset [96]. Instead of seeking a sin-
gle correct answer, users in exploratory settings often engage
in knowledge foraging, dynamically adjusting their informa-
tion needs as they encounter new insights. Conversational
search agents must support this fluidity by providing contex-
tually relevant suggestions, reformulations, and explanatory
feedback.

Beyond ambiguity resolution, the interplay between sym-
bolic reasoning, probabilistic inference, and latent embed-
dings influences broader aspects of conversational search,
including knowledge integration, context modeling, and re-
sponse generation [97]. For example, hybrid models that
combine structured reasoning with deep neural retrieval have
shown promise in enhancing the accuracy and interpretability
of search results. In legal and biomedical domains, where pre-
cision is critical, systems leveraging both domain ontologies
and transformer-based retrieval achieve superior performance
compared to purely statistical approaches. [98]

Future research directions in conversational search should
explore deeper integration of these complementary techniques.
For instance, extending symbolic knowledge representations
with neural embeddings can facilitate more nuanced entity
linking and relation extraction. Additionally, developing ex-
plainable AI (XAI) methods for conversational agents will

be essential to ensure transparency and trustworthiness, par-
ticularly in high-stakes domains such as healthcare, finance,
and legal research [99, 100]. Explainability techniques, such
as attention visualizations and logic-driven justifications, can
help users understand how the system arrives at specific inter-
pretations and recommendations.

Moreover, ongoing advancements in few-shot and zero-
shot learning may further enhance the adaptability of conver-
sational search agents [101]. Current models often require ex-
tensive domain-specific training to achieve high accuracy, but
emerging paradigms in transfer learning and meta-learning
offer the potential to generalize across diverse topics with
minimal supervision. This would significantly expand the ap-
plicability of conversational agents to specialized fields where
annotated data is scarce.

Finally, the integration of multimodal inputs—such as text,
speech, and visual data—represents an exciting frontier for
conversational search [102]. Many real-world information-
seeking tasks involve multiple modalities, such as retrieving
medical images based on textual descriptions or summariz-
ing legal documents through spoken queries. Developing
robust multimodal conversational agents will require new
architectures capable of fusing heterogeneous data sources
while maintaining coherence in dialogue management.

The convergence of symbolic reasoning, probabilistic
modeling, and neural embeddings has significantly advanced
the state of conversational search [103]. While challenges
remain in ambiguity resolution, user adaptation, and domain-
specific customization, ongoing research continues to refine
the balance between interpretability, efficiency, and scalability.
As conversational search agents become increasingly sophisti-
cated, their potential applications will expand, offering more
intuitive and effective means of accessing and navigating com-
plex knowledge landscapes. [104]

Although the proposed methods show promise, there are
limitations. Chief among them is the computational overhead
of integrating symbolic constraints with probabilistic infer-
ence on large knowledge graphs. While this overhead may
be reduced through optimized indexing, caching strategies,
or distributed processing, it remains a practical consideration
for real-time applications [105]. Additionally, domain com-
plexity can still exceed the scope of the system’s ontology or
embeddings if critical information has not been captured or if
new domain concepts emerge unexpectedly.

Looking ahead, continued research may focus on refining
the interplay between user modeling and domain reasoning,
ensuring that individual user preferences, background knowl-
edge, and context are seamlessly integrated into the agent’s
interpretation strategies. The lessons learned from this body
of work highlight the need for comprehensive, multi-layered
reasoning systems that approach human-like conversational
competence in domains where clarity and precision are non-
negotiable. [106]
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